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Summary of the thesis

This thesis investigates timelike maximal surfaces in the Minkowski space R1+2, from

the perspective of both the initial value problem (IVP) and initial-boundary value

problems (IBVPs).

Timelike maximal surfaces have been proposed for a number of physical theories

(see §1.1.3) and their dynamics give rise to an interesting case study for a geometric

evolution of wave type. A thorough review of the literature on timelike maximal

surfaces will be found in §1.3, but for the purposes of this summary let us briefly

mention some key points. The global dynamics of spatially compact timelike maximal

surfaces in R1+2 (surfaces diffeomorphic to S1 × R) are relatively well understood.

In particular, it is known that solutions to the IVP for such surfaces (i.e. the flow

of closed curves) always become singular in finite time. Moreover, the dynamics

of spatially non-compact timelike maximal surfaces in R1+2 (surfaces diffeomorphic

to R2) within the regime of ‘small-data’ are also relatively well-understood. Here

it is known that the Cauchy evolution of a smooth non-compact curve of ‘small’

curvature and velocity in R1+2 yields a global solution to the IVP which is a smooth

properly embedded graphical timelike maximal surface in R1+2 ‘close’ to a flat timelike

plane. Many illuminating results have been obtained regarding the mechanisms for

singularity formation for timelike maximal surfaces in R1+2, but there still remain

interesting questions to be answered. For example, we do not have a satisfactory

classification of all possible mechanisms for singularity formation. Moreover, it is not
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known whether there exists a ‘good’ (in particular, C1 and unique) notion of timelike

maximal surface to be adopted after a singularity has formed (i.e. a good notion of

weak solution) in the generic case of singularity formation. Finally, whilst IBVPs for

timelike maximal surfaces arise in certain physical theories, the author does not know

of mathematical treatments of such problems aside from some work concerning global

existence results within the small-data regime.

Loosely speaking, the main aims of this thesis are as follows: (1) to ‘close the gap’

between the spatially compact and spatially non-compact regimes, by investigating

in more detail the dynamics of spatially non-compact timelike maximal surfaces in

R1+2 (in the ‘large-data’ regime); (2) to further investigate singularity formation for

timelike maximal surfaces in R1+2; (3) to develop a framework to solve IBVPs for

timelike maximal surfaces in R1+2 by conformal methods and to study the conformal

structures of solutions to such IBVPs.

We will now briefly survey the main results of this thesis (refer to §1.4 for a more

detailed presentation). We prove that

(I) if φ : R2 → R1+2 is a smooth proper timelike immersion with vanishing mean

curvature then φ is an embedding and every compact subset of Im(φ) is a smooth

graph (Theorem 2.3).

We also construct examples of smooth proper timelike maximal immersions φ : R2 →

R1+2 for which Im(φ) is not a graph, demonstrating that the restriction to compact

subsets in (I) cannot be relaxed. These may be viewed as ‘large-data’ results, and

(I) has consequences for the IVP for timelike maximal surfaces (i.e. given a smooth

proper spacelike planar immersion C : R→ R1+2 and a smooth timelike vector field V

along C, find a smooth timelike maximal surface in R1+2 which contains Im(C) and

is tangent to V along C). Indeed, it may be seen to follow from (I) that if the image

of the unit tangent vector U0 along C contains a closed semi-circle (or, equivalently, if
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Im(C) contains a compact subset which is not a smooth graph) then any inextendible

solution to the IVP must become singular, at some point in either the future or the

past. We prove that

(II) singularity formation always involves a blow-up of spatial curvature, and the

curvature blow-up occurs in an L1
timeL

∞
space-norm (Theorem 3.1).

This result provides a further step towards a classification of singularity formation. It

follows from (II) that a solution to the IVP which becomes singular in finite time will

be C2 inextendible beyond the singular time. We analyse in some detail the method of

evolution by isothermal gauge, which gives a well-known notion of evolution beyond

singular time. We show that there exist (non-generic) examples of smooth initial data

(C, V ) for which Im(U0) is exactly a closed semi-circle and for which the spatial unit

tangent along the evolution by isothermal gauge of (C, V ) extends continuously to a

globally defined unit tangent vector field. In these examples, we then deduce that the

evolution by isothermal gauge defines a global C1 extension beyond singular time.

But we also show that this situation is ‘borderline’. To be precise, we prove that

(III) if Im(U0) contains an arc of length > π then the spatial unit tangent along the

evolution by isothermal gauge admits no continuous extension to a unit tangent

vector field (Theorem 4.16).

This result shows that, outside of the ‘borderline’ cases, the evolution by isothermal

gauge is never a ‘good’ notion of global solution.

In addition to the above results, we develop a framework for analysing IBVPs

for timelike maximal surfaces by conformal methods. The boundary conditions that

we consider are: (a) a single (arbitrary) timelike curve, (b) a single timelike plane,

and (c) a pair of parallel timelike lines. In each of the cases (a), (b) & (c) we show

how to solve the IBVP globally in isothermal gauge, yielding a global solution with
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possible singular points (i.e. we show how to construct a Weierstrass-type formula in

each case). For the case of a non-empty singular set we present some analysis of the

singular points. We also derive some estimates on the initial-boundary data which

imply an empty singular set, thus yielding global existence of solutions to the IBVP

for certain non-empty open sets of initial-boundary data. These are the first such

non-perturbative global existence results. For case (b) our methods could be applied

to a general timelike boundary surface, but we restrict attention to the plane to keep

the presentation simple. Our methods do not give explicit representation formulas

except for in a few special cases (a single timelike line, a single timelike plane, a pair

of parallel timelike lines) which we treat in detail. A final point should be mentioned

concerning our method. To apply our method to an IBVP, we must first choose a

priori the conformal structure of the solution. A weakness of this approach is that

we must impose additional C2 compatibility conditions on the initial-boundary data

‘at the corner’ in order to obtain existence (see (5.15)). A strength of the method is

that we do obtain global solutions with our choice of conformal domain—which has

a particularly simple structure of null infinity—and we are then able to infer that the

global solution to the IBVP has a simple null infinity a postiori.

Note for the reader: Refer to Appendix A for a detailed account of the structure

of the thesis, and refer to Appendix B for the notation and terminology of the thesis.

Most of the material from Chapters 2–4 may be found in the author’s preprint [65]

(submitted for publication).
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Chapter 1

An invitation to timelike maximal

surfaces

1.1 Historical context & motivation

1.1.1 A brief history of minimal surfaces in Euclidean space

and the conformal method.

In 1760, Lagrange [47] wrote down the equation

 ux√
1 + u2

x + u2
y


x

+
 uy√

1 + u2
x + u2

y


y

= 0 (1.1)

describing a graphical surface Σ = {(x, y, u(x, y))} ⊆ R3 which extremizes the area

functional with respect to compactly supported variations (what is now called a min-

imal surface). The equation (1.1) is nonlinear and Lagrange did not give explicit

solutions apart from the flat planes D2u ≡ 0. In 1776, Meusnier [55] identified (1.1)

as being equivalent to the condition that the surface Σ has vanishing mean curvature

and gave examples of non-trivial solutions to (1.1), the catenoid and the helicoid
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(neither of which can be written globally as a graph, but which solve (1.1) over local

graphical patches).

Of special importance in the analysis of (1.1) has been the development of con-

formal methods. If Σ ⊆ R3 is a smooth minimal surface then there are of course

many different ways to parameterise Σ, and since the mean curvature is independent

of the parameterisation, one may then facilitate the solution of the maximal surface

equation (thanks to Meusnier’s observation) by exploiting this freedom. Indeed, if

φ : U2 ⊆ R2 → R3 is a smooth immersion then the mean curvature is

H(φ) = 1√
det(g)

∂i

(√
det(g)gij∂jφ

)
(1.2)

where gij = 〈∂iφ, ∂jφ〉 is the first fundamental form and we have adopted the summa-

tion convention with gijgjk = δik. Now suppose that φ is also a conformal map with

respect to the Euclidean metric ds2 = dx2 + dy2 on R2 i.e. suppose the conditions

|φx(x, y)|2 − |φy(x, y)|2 = 0 (1.3)

〈φx(x, y), φy(x, y)〉 = 0 (1.4)

hold. Then the equation H(φ) = 0 becomes the Laplace equation

φxx + φyy = 0. (1.5)

Writing the conditions (1.3) and (1.4) in complex coordinates as |φx + iφy|2 = 0

and using the fact that the real and imaginary parts of any holomorphic function

on the complex plane satisfy (1.5), it turns out to be possible to construct conformal

parametrizations of minimal surfaces from holomorphic functions by algebraic means.

This is achieved via the elegant Weierstrass representation formula for minimal sur-
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faces [63, Lemma 8.1].

Over the past two and a half centuries, many interesting examples of minimal

surfaces in R3 have been constructed. These include examples of complete minimal

surfaces in R3 of a variety of topological types (e.g. the surfaces of Scherk) as well

as examples of complete minimal surfaces in R3 with self-intersections (e.g. the sur-

faces of Enneper, Figure 1.1). On the other hand, many remarkable theorems have

demonstrated that the complete minimal surfaces in R3 exhibit a certain rigidity. Let

us mention here a few such results. Bernstein famously proved that any complete

minimal surface in R3 which is a graph, must be a plane [11]. Osserman extended

this result and proved that for any complete minimal surface in R3 the image of the

unit normal vector is either a single point, in the case of a plane, or it is dense in

the unit sphere S2 [61]. Osserman’s theorem was sharpened over some years until

Fujimoto proved that either the image of the unit normal is a single point, or it omits

at most 4 points in the unit sphere [30]. This is the sharpest possible bound since

Scherk surfaces have a unit normal which omits exactly 4 points in the unit sphere

[62]. A survey of these results (excluding Fujimoto’s theorem) and much more can

be found in Osserman’s book [63].

1.1.2 Der glücklichste Gedanke meines Lebens: the advent

of Lorentzian geometry

The subject of Lorentzian geometry was developed at the turn of the 20th century by

Einstein, Grossman, Lorentz, Minkowski, and others, and emerged at the forefront of

mathematical research due to the success of the theory of relativity [67, pp.35–38],

[31, Chap.16–17].

To illustrate the central role that Lorentzian geometry plays in modern physics,

let us consider an English cricketer striking the ball for 6 in this year’s recent world
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Figure 1.1: Enneper’s minimal surface. A complete self-intersecting minimal
surface in R3 whose unit normal omits exactly one point on the sphere (image
obtained with permission from MathWorld [71])

.

cup final. The student of the 19th century would have been taught the following

picture. The ball is struck into the air and acted upon by a force due to gravity. This

force acts exactly in proportion to the ball’s inertial mass and thus induces the ball

to accelerate at a constant rate (≈9.8ms-2) towards the earth. The ball traverses a

perfect parabola as it passes the boundary and returns to earth somewhere in the

crowd. For the present day undergraduate, however, this picture is turned on its

head. The ball now feels no force at all, but instead traverses a path of least action in

space-time (no acceleration). It is in fact the cricketer who feels a force beneath his

feet as he, and the entire of Lord’s cricket ground, are accelerated upwards towards

the ball! Far more than an exercise in semantics, this wonderful new point of view

is crucial to the theory of relativity, and was referred to by Einstein as the “happiest

thought of my life” [26], [64, p178].

The example discussed above is supposed to illustrate a radical modern perspective

on the world, and the mathematical structure behind this viewpoint (the thing which

gives meaning to the question of whether it is the cricketer or the ball which is
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accelerated) is a Lorentzian manifold. We are now taught in undergraduate courses

that physical laws may be expressed in terms of a Lorentzian metric and the field

of Lorentzian geometry, together with the geometric partial differential equations

associated with it, would appear to provide the mathematical canvas on which our

vibrant picture of reality is painted. For the perfect discussion of space and time and

of what it means to be at rest, we refer to Einstein’s book [27].

1.1.3 Timelike maximal surfaces

Since the arrival of the theory of relativity, many physical theories have been formu-

lated within the framework of Lorentzian geometry. Born & Infeld [15] and later Dirac

[21] were among prominent physicists of the 20th century who proposed new theo-

ries of electromagnetism. In one simplified setting, the equations of the Born-Infeld

theory for a plane electromagnetic wave reduce to

 ut√
1 + u2

x − u2
t


t

−

 ux√
1 + u2

x − u2
t


x

= 0, (1.6)

see Barbashov & Chernikov [6]. Equation (1.6) is often referred to as the Born-Infeld

equation and it is the hyperbolic analogue of Lagrange’s minimal surface equation

(1.1). Analogously to the situation for the minimal surface equation, (1.6) describes

a timelike surface Σ = {(t, x, u(x, t))} in Minkowski space R1+2 with vanishing mean-

curvature, which is called a timelike maximal surface.

Timelike maximal surfaces have many properties giving them appeal for physical

theories: the mean curvature is a geometric object, in that it is independent of the

choice of local coordinates on the surface and invariant under isometries of the am-

bient space; timelike maximal surfaces are extremal points of an area functional, so

they satisfy a principle of least action; and the timelike maximal surface equations are

18



invariant under rescalings of the ambient space, so their dynamics are independent of

the choice of scale. In addition to the Born-Infeld theory, timelike maximal surfaces

have arisen in numerous physical theories including in cosmological models of the

early universe (as so-called cosmic strings [44]) and in bosonic string theory (known

as extremal points of the Nambu-Goto action [43, Chap. 2]) where they have en-

joyed some particular attention recently due to the successes of holography in certain

computations of particle physics [54], [18, Section 6].

Aside from all potential applications, given the beauty of the theory of minimal

surfaces in R3, it seems natural to study the timelike maximal surfaces in R1+2 in

their own right as a subdiscipline of Lorentzian geometry. This is the standpoint from

which this thesis is written, and for the rest of this document we will be motivated

by purely mathematical considerations.

1.2 Timelike maximal surfaces: an evolution prob-

lem

1.2.1 The initial value problem (IVP)

We now turn to the topic of this thesis, timelike maximal surfaces. Since we are to

study a geometric PDE, it is important for us to specify a notion of global solution.

A good notion of global solution in the context of timelike maximal surfaces is given

by a properly immersed surface. This is illustrated by the following lemma, which

shows us that a properly immersed timelike surface in R1+2 may be visualised as an

unbroken flow of immersed planar curves.

Lemma 1.1. Suppose that U2 is a smooth connected surface and φ : U2 → R1+2 is a

smooth proper (i.e. the preimage of any compact set is compact) timelike immersion.
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Then there exists a smooth connected 1-manifold Λ1 (either Λ1 = S1 or Λ1 = R) and

a smooth diffeomorphism ψ : Λ1 × R→ U2 such that

(φ ◦ ψ)(s, t) = (t, γ(s, t))

for some smooth γ : Λ1 × R→ R2 where each immersion γ(·, t) : Λ1 → R2 is proper.

Proof. The proof is by Morse theory and may be found in [4]. Alternatively, refer to

our proof of Lemma 2.1 in §2.1 in which the main ideas may be found.

From Lemma 1.1 we see that there are only two possible topologies for a properly

immersed timelike surface, the spatially compact case S1 × R and the spatially non-

compact case R2. Moreover, Lemma 1.1 shows that the x0 coordinate on R1+2 restricts

to give a natural time-function on a properly immersed timelike surface. We are now

in a good position to state the initial value problem (IVP) for timelike maximal

immersions.

Definition 1.2 (The initial value problem (IVP) for timelike maximal immersions).

Let Λ1 = S1 or R and C : Λ1 → R1+2 be a smooth proper immersion of the form

C(s) = (0, c(s)) and let V be a smooth future-directed timelike vector field along

C. We call (C, V ) an initial data. Given an initial data (C, V ), the IVP is to find

a T ∈ (0,∞] and a smooth proper timelike maximal1 immersion φ : Λ1 × [−T, T ] →

R1+2 in the case T < ∞ or φ : Λ1 × R → R1+2 in the case T = ∞ of the form

φ(s, t) = (t, γ(s, t)) such that s 7→ φ(s, 0) is a monotone reparameterisation of C and

V is tangent to Im(φ) along C. If T <∞ we say that φ is a local solution to the IVP

and if T =∞ we say that φ is a global solution to the IVP.

Remark 1.3. We may also refer to a solution to the IVP for an initial data (C, V )

as a Cauchy evolution of (C, V ). We may refer to φ
∣∣∣
t≥0

as a future Cauchy evolution

1i.e. vanishing mean curvature, see Appendix B
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of (C, V ) and φ
∣∣∣
t≤0

as a past Cauchy evolution of (C, V ). Note that, for us, a global

solution is an evolution of (C, V ) towards both future and past.

1.2.2 The issue of gauge

Solutions to the IVP, as it is stated in Definition 1.2, will not be unique. This

follows from the independence of the mean curvature from the system of coordinates.

Indeed, suppose that φ : Λ1 × [−T, T ] → R1+2 is a solution to the IVP for an initial

data (C, V ) and let ψ : Λ1× [−T, T ]→ Λ1× [−T, T ] be any smooth diffeomorphism of

the form ψ(s, t) = (ω(s, t), t) where s 7→ ω(s, t) is a monotone reparameterisation for

all t ∈ [−T, T ]. Then since the mean curvature satisfies H(φ) = H(φ ◦ ψ) it follows

that φ ◦ ψ will also be a solution to the IVP for the initial data (C, V ).

To obtain a well-posed system of equations in order to analyse the IVP, one

approach is to break this diffeomorphism invariance by fixing a priori some preferred

choice of parameterisation (called fixing the gauge). To illustrate the idea of gauge

fixing, suppose that we restrict ourselves to graphical parameterisations of the form

φ : R× [−T, T ]→ R1+2;

φ(s, t) = (t, s, u(s, t)). (1.7)

Then the timelike maximal surface equation (B.1) reduces to

 ut√
1 + u2

x − u2
t


t

−

 ux√
1 + u2

x − u2
t


x

= 0

which we recognise as the Born-Infeld equation (1.6). The Born-Infeld equation is

strictly hyperbolic and thus admits a unique smooth solution u : R × [−T, T ] → R

for some T > 0 given any smooth initial data (u
∣∣∣
t=0
, ut
∣∣∣
t=0

) which decays sufficiently

rapidly at infinity (see eg. [68, Theorem 5.1]). Thus by fixing the graphical gauge we
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obtain a well posed equation to analyse in (1.6).

Remark 1.4. One can only hope to obtain global solutions via the ansatz (1.7)

provided the evolution of graphical data remains graphical for all time. More gen-

erally, the trick of gauge fixing will only work so long as the gauge conditions are

‘propagated’ by the timelike maximal surface equations.

1.2.3 The isothermal gauge

In the previous section we discussed the trick of fixing a gauge and it is now a good

time to introduce the isothermal gauge. This will provide us with a host of exam-

ples of timelike maximal surfaces in R1+2, similarly to the way that the Weierstrass

representation formula provides many examples of minimal surfaces in R3.

To understand why the isothermal gauge trick works, it is helpful for us first to

understand a key property of timelike maximal surfaces. Suppose that Σ ⊆ R1+2 is

a timelike maximal surface and let (z+, z−) be local null coordinates on Σ. That is,

the local parameterisation of Σ by (z+, z−) 7→ φ(z+, z−) is such that the vectors ∂φ
∂z+

and ∂φ
∂z−

are null. Then the timelike maximal surface equation (see (B.1)) reduces to

the wave equation

∂2φ

∂z+∂z−
= 0. (1.8)

It follows from (1.8) that the vectors ∂φ
∂z+

are constant along lines {z+ = constant}

whilst the vectors ∂φ
∂z−

are constant along lines {z− = constant}. We have arrived at

a key property of timelike maximal surfaces.

Property 1.5. On a timelike maximal surface, the outgoing null tangent directions

are constant along the integral curves of the incoming null vector fields, whilst the

incoming null tangent directions are constant along the integral curves of the outgoing
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null vector fields.

Property 1.5 motivates the following idea: choose a gauge for which the coordinate

directions are null, and these gauge conditions will be ‘propagated’ by the equation.

The following lemma shows that this idea works a treat.

Lemma 1.6 (Propagation of isothermal gauge). Let Λ1 = S1 or R and suppose

φ : Λ1 × R→ R1+2 is a smooth map which satisfies the wave equation

∂2φ

∂z+∂z−
= ∂2φ

∂t2
− ∂2φ

∂s2 = 0 (WE)

and which satisfies

‖ ∂φ
∂z+
‖2 = ‖∂φ

∂t
+ ∂φ

∂s
‖2 = 0 (G1)

‖ ∂φ
∂z−
‖2 = ‖∂φ

∂t
− ∂φ

∂s
‖2 = 0 (G2)

along Λ1×{0} where ‖ · ‖2 denotes the Minkowskian product (see Appendix B). Then

φ satisfies (G1) and (G2) on all of Λ1 × R.

Proof. From (WE) we have ∂
∂z+
‖ ∂φ
∂z−
‖2 = ∂

∂z−
‖ ∂φ
∂z+
‖2 = 0 and the lemma follows

immediately.

In light of Lemma 1.6, we now make the following definition.

Definition 1.7. Let (C, V ) be a smooth initial data as in Definition 1.2. By reparam-

eterising, without loss of generality we may take (C, V ) of the form C(s) = (0, c(s)),

V (s) = (1, v(s)) where |v(s) + c′(s)|2 = |v(s)− c′(s)|2 = 1 i.e. such that

A±(s) = V (s)± C ′(s) = (1, v(s)± c′(s)) = (1, a±(s)) (1.9)
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are null. Let φ : Λ1 × R → R1+2 denote the unique smooth solution to (WE) with

initial conditions φ(s, 0) = C(s), φt(s, 0) = V (s). We call φ the evolution of (C, V )

by isothermal gauge.

It may be seen that the evolution by isothermal gauge φ : Λ1×R→ R1+2 is of the

form

φ(s, t) = (t, γ(s, t))

and from Lemma 1.6 it follows immediately that φ is a smooth timelike maximal

immersion on (Λ1 × R) \ K where

K = {(s, t) ∈ Λ1 × R : γs(s, t) = 0}.

If K = ∅ (i.e. if φ is an immersion) then φ gives a global solution to the IVP of

Definition 1.2. In general, however, φ will not be an immersion and φ will only give

a local solution to the IVP.

Remark 1.8. Recall that solutions of the wave equation (WE) may be given explicitly

in terms of the initial data by d’Alembert’s formula

γ(s, t) = 1
2

(
c(s+ t) + c(s− t) +

∫ s+t

s−t
v(ζ)dζ

)

which implies

γs(s, t) = 1
2 (c′(s+ t) + c′(s− t) + v(s+ t)− v(s− t))

= 1
2 (a+(s+ t)− a−(s− t))
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and we end up at the following equivalent characterisation of the singular set

K = {(s, t) ∈ Λ1 × R : a+(s+ t) = a−(s− t)}.

In other words, φ is singular iff the images of the null directions along the initial data

Im(a+) and Im(a−) overlap (compare with Property 1.5).

Let us conclude this section with two simple examples of timelike maximal surfaces

obtained by isothermal gauge.

Example 1.9 (The timelike plane). Let C(s) = (0, s, 0) and V (s) = (1, 0, 0). Then

the evolution by isothermal gauge of (C, V ) is given by φ : R2 → R1+2, φ(s, t) =

(t, s, 0). We have K = ∅ (i.e. φ is an immersion) and Im(φ) is the {x2 = 0} plane.

Example 1.10 (The shrinking circle). Let C(s) = (0, cos s, sin s) and V (s) = (1, 0, 0).

Then the evolution by isothermal gauge of (C, V ) is given by

φ(s, t) = (t, cos t cos s, cos t sin s).

We see that

K =
{

(s, t) ∈ S1 × R : t ∈ {. . . , −π2 ,
π

2 ,
3π
2 , . . .}

}
.

Viewing φ
∣∣∣
S1×[0,π2 )

as a future Cauchy evolution of planar curves (i.e. looking at the

{x0 = t} cross sections of φ(S1 × [0, π2 ) as t ranges from 0 to π
2 ) we observe a family

of circles which shrink to a point singularity in finite time, see Figure 1.2.
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(i) (ii)

(iii) (iv)

(v) (vi)

(vii)

Figure 1.2: The shrinking circle solution of Example 3.3 plotted alongside
its spatial cross sections {x0 = t} (projected onto the x1–x2 plane) for (i)
t = 0, (ii) t = π

12 , (iii) t = 2π
12 , (iv) t = 3π

12 , (v) t = 4π
12 , (vi) t = 5π

12 , (vii)
t = 6π

12 = π
2 . This is a future Cauchy evolution consisting of a family of

circles which collapse to a point singularity in finite time π
2 .
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1.3 Literature review

1.3.1 Singularity results

As we saw for the shrinking circle (Example 1.10) solutions to the IVP for timelike

maximal surfaces may become singular in finite time. In fact, given any closed initial

curve C : S1 → R1+2 and any initial velocity V along C, it is known that any Cauchy

evolution of (C, V ) to a timelike maximal surface in R1+2 must become singular in

finite time. Indeed, by solving the equations in isothermal gauge, Hoppe obtained

a formula for the curvature of an evolving closed string and showed that it always

blows up in finite time [36] (this was also noted in earlier work of Pronko, Razumov &

Soloviev [66]). Nguyen & Tian proved the statement: there exists no smooth proper

timelike immersion φ : S1 × R → R1+2 with vanishing mean curvature [59, Theorem

1.1].

Let us now discuss the literature on formation of singularities for timelike max-

imal surfaces in R1+2. The shrinking circle of Example 1.10 illustrates a special

case of a theorem of Belletini, Hoppe, Novaga & Orlandi, who proved that given

any smooth closed convex and centrally symmetric curve C with timelike velocity

V = (1, 0, 0) = ∂x0 along C, the evolution of (C, V ) by isothermal gauge consists of a

family of smooth convex curves which shrink to a point in finite time [8, Propositions

5.2 & 5.4]. However, it may be seen that the collapsing solutions of [8] are unstable

under perturbation and in general a closed convex curve (without symmetry assump-

tion) will form a singularity in finite time before collapse. Let us proceed to discuss

the generic case of singularity formation. Eggers & Hoppe [23] studied singularity

formation for the Born-Infeld equation (recall (1.6)) under a self-similar ansatz in all

spatial dimensions. They also compared their results with the evolution by isothermal

gauge (Definition 1.7) which is available in the case of one space dimension. Recall
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Figure 1.3: The swallowtail singularity. The spatial cross sections of the
evolution by isothermal gauge for some initial curve C and some initial ve-
locity V along C are plotted (projected onto the x1–x2 plane). The curve
C = {x0 = 0} is plotted in darkest blue and the successively lighter blue
curves represent spatial cross sections {x0 = t} as t increases in 10 regularly
spaced intervals from t = 0 to t = π

2 with the first time of singularity occuring
at t ≈ 3π

20 .

that the evolution by isothermal gauge gives an explicit representation formula for

a solution to the IVP and that singularities correspond to points where this formula

fails to give an immersion. By analysing a Taylor expansion of the evolution by

isothermal gauge around the point at which singularity first occurs, Eggers & Hoppe

observed that for generic smooth initial data the evolution by isothermal gauge at the

first time of singularity will look like a swallowtail (Figure 1.3). In the swallowtail, at

the first time of singularity t∗ > 0 the spatial cross section {x0 = t∗} is a C1,1/3 curve,

whilst for t > t∗ the spatial cross section {x0 = t} has a pair of ordinary cusps. In

particular, in this generic case the evolution by isothermal gauge does not give a C1

evolution beyond the first singular time. For a more detailed description of generic

singularity formation in isothermal gauge, we refer to Nguyen & Tian [59, Section 3].
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Remark 1.11 (The swallowtail in other areas of maths). The swallowtail is well

known from the branch of mathematics known as singularity theory or catastrophe

theory, which studies the points at which a smooth map fails to give an immersion

(see Whitney [72] or e.g. Arnol’d [3]). The swallowtail singularity also occurs as the

shape of a wave front in geometric optics (Neu [60, Chap. 4]). For discussion of the

links between the singularities of timelike maximal surfaces and the eikonal equation

of geometric optics see Eggers, Hoppe, Hynek & Suramishvilli [24] or Neu [58] and for

discussion of links with some self-similar singularity formations which arise in fluid

dynamics see Eggers & Suramlishvili [25].

Remark 1.12 (Singularities in higher dimensions and codimensions). It may be seen

that singularity formation for (1+1)-dimensional timelike maximal surfaces in R1+2

also describes cases of singularity formations for timelike maximal surfaces in higher

dimensions and codimensions, by trivially taking cross products and exploiting the

finite speed of propagation for wave equations. But this is certainly not all the inter-

esting behaviour! For some recent work on singularity formation in higher dimensions

and codimensions, we refer to Bahouri, Marachli & Perelman [5], Wong [75], and Yan

[76], and for some beautiful numerical simulations of singularity formation for codi-

mension 1 timelike maximal surfaces in R1+3, we refer to Eggers, Hoppe, Hynek &

Suramlishvili [24].

1.3.2 Stability results

In the last section we highlighted some literature on singularity formation for timelike

maximal surfaces in R1+2 which is of particular relevance to our work. We will now

proceed to briefly discuss some further results on timelike maximal surfaces, starting

in this section with stability results in all dimensions and codimensions.

The global existence of solutions to the IVP for timelike maximal surfaces in
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Minkowski space with initial data lying sufficiently close (in a Sobolev sense) to planar

initial data together with the asymptotic convergence of solutions to said plane, was

established by Brendle [16] (for (1 +d)-dimensional codimension 1 timelike planes for

d ≥ 3), by Lindblad [50] (for (1 + d)-dimensional codimension 1 timelike planes for

d ≥ 1 with asymptotic convergence only in the case d ≥ 2), and by Allen, Andersson

& Isenberg [1] (for (1+d)-dimensional timelike planes of arbitrary codimension for d ≥

2). Wong has given some improved results on the necessary decay required at infinity

to prove global existence for small initial data for timelike maximal surfaces in R1+2 by

energy methods [74]. With regards to an IBVP for timelike maximal surfaces in R1+2,

the global existence of solutions to the Born-Infeld equation (1.6) for small Dirichlet

initial-boundary data was established by Liu & Zhou on the quadrant [0,∞)× [0,∞)

[51] as well as on the strip [0, 1] × [0,∞) [52] with boundary data both small and

decaying for the latter case. See also Sun [69] for some improved results on the

two-boundary case including a Neumann boundary condition and a mixed Dirichlet-

Neumann boundary condition (again with small data with respect to a weighted decay

norm). Finally, let us mention the interesting work of Donninger, Krieger, Szeftel

& Wong [22] who studied the stationary catenoidal solution to the codimension 1

timelike maximal surface equations in R1+3. Those authors identified an unstable

mode of the linearized equation and proved the existence, in a neighbourhood of

the catenoidal initial data in a certain symmetry class, of a codimension 1 Lipschitz

manifold transverse to the unstable mode consisting of initial data for which global

solutions exist and converge asymptotically to the catenoid.

Remark 1.13 (Comparison with the elliptic setting). The stability of the timelike

plane discussed above shows that there exist many smooth graphical properly em-

bedded timelike maximal surfaces in R1+2. This is in contrast with the situations for

minimal surfaces in R3 (i.e. Bernstein’s theorem) and spacelike maximal surfaces in
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R1+2 (i.e. Calabi [19]).

1.3.3 Further relevant results

With regards to weak formulations of the IVP, Brenier studied compactness properties

of spatially non-compact timelike maximal surfaces and introduced the “subrelativis-

tic string” as a generalized notion of solution [17]. This work was extended to the

spatially compact setting by Belletini, Hoppe, Novaga & Orlandi in [8]. Timelike

maximal surfaces have been studied as limits of concentration sets of the station-

ary points of a class of hyperbolic Ginzburg-Landau type functionals, see Neu [58],

Belletini, Novaga & Orlandi [9], and Jerrard [41]. Belletini, Novaga & Orlandi have

introduced notions of generalized timelike maximal surfaces using the language of

varifolds and have shown, in particular, that these include the category of subrela-

tivistic strings [10]. For work on the static Born-Infeld equation with a distribution

of point charges, we refer to Bonheure, Colasuonno & Földes [12] and the references

therein.

Whilst there exist no smooth proper timelike maximal immersions φ : S1 × R →

R1+2, Nguyen & Tian gave an example of a smooth proper timelike maximal immer-

sion φ : S1 ×R→ R1+3 and conjectured that generic closed curves evolve to globally

regular surfaces in higher codimension [59, Appendix]. This conjecture was proved by

Jerrard, Novaga & Orlandi in [42], where it was shown that for n ≥ 4 the evolution of

a generic spacelike closed curve in R1+n in a generic timelike direction by isothermal

gauge yields a proper timelike maximal immersion φ : S1 × R → R1+n whilst in the

borderline case n = 3 there are distinct, non-empty open sets of initial data leading

to both regular surfaces and singular surfaces respectively.

For (1+1)-dimensional timelike maximal surfaces in curved spacetimes (important

for physical theories incorporating gravity) it is still possible to solve the equations
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in isothermal gauge, see Gu [33]. This leads to an analysis of (1+1) wave maps into

Lorentzian target manifolds. It may be seen to follow from the work of Gu [32] that

the equations for a (1+1) wave map into a static Lorentzian target give globally

regular solutions, and some further results on regularity of (1+1) wave maps into

non-static targets were obtained by Müller in his PhD thesis, see [57].

For lots of interesting work on timelike maximal surfaces in all dimensions and

codimensions and in particular for discussion on physical applications (i.e. quantized

models) we refer to the survey article of Hoppe [38] as well as the many more papers

of Hoppe [35]–[37] and of Hoppe and his collaborators [2, 8, 13, 14, 23, 39, 40],

together with the references therein. To name just a few works from the body of

work on spacelike maximal surfaces in Minkowski space, one may see Bartnik [7],

Calabi [19], and Lambert [48] and the references therein. For interesting work on

spacelike mean curvature flow in pseudo-Euclidean spaces of arbitrary signature, see

Lambert & Lotay [49], and for maximal surfaces in Minkowski space of mixed type

(i.e. with both timelike and spacelike parts) we refer to Gu [34] or to the more recent

work of Fujimori et. al. [29] and the references therein. For recent work on the Born-

Infeld equation and non-uniqueness of maximal globally hyperbolic developments, we

refer to Eperon, Real & Spierski [28]. For the “hyperbolic mean curvature flow” and

other related geometric PDE, see the work of Kong et. al. (e.g. [45] and the references

therein). Finally, for an intriguing account of timelike CMC surfaces in Minkowski

space, we refer to Wong [73].
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1.4 Statement of the main results of this thesis

1.4.1 Embeddedness of timelike maximal surfaces

We now turn to the main results of this thesis. Recall that it was proved by Nguyen &

Tian [59] (following work of Hoppe [36]) that there exists no smooth proper timelike

immersion φ : S1 × R→ R1+2 with vanishing mean curvature. Thus, by Lemma 1.1,

every smooth properly immersed timelike maximal surface in R1+2 is an immersed R2.

In other words, every global solution to the IVP for timelike maximal surfaces is a

Cauchy evolution of a non-compact curve. Moreover, from the stability of the timelike

plane (recall §1.3.2) we know that there exist many properly embedded graphical

timelike maximal surfaces in R1+2 close to a timelike plane (i.e. many global solutions

in the spatially non-compact case). Our first result concerns the geometry of spatially

non-compact timelike maximal surfaces. We prove:

Theorem 2.3. Let φ : R2 → R1+2 be a smooth proper timelike immersion with van-

ishing mean curvature. Then φ is an embedding. Moreover, for each compact subset

K ⊆ φ(R2) there is a timelike plane P ⊆ R1+2 such that K is a smooth graph over

P .

Let us gather a few remarks about Theorem 2.3.

Remark 1.14 (Sharpness of Theorem 2.3). In §2.3 we will see examples of smooth

proper timelike maximal embeddings φ : R2 → R1+2 for which φ(R2) is a smooth graph

as well as examples of smooth proper timelike maximal embeddings φ : R2 → R1+2 for

which φ(R2) is not a graph. The latter examples show that the restriction to compact

subsets in Theorem 2.3 cannot be relaxed in general.

Remark 1.15 (The conformal structure of timelike maximal surfaces). Crucial to

the proof of Theorem 2.3 will be the construction of a smooth conformal equivalence

33



between any smooth properly immersed timelike maximal surface and the Minkowski

plane R1+1, see Lemma 2.2. The remarkable fact that such a conformal equivalence

always exists was known already from the work of Milnor [56], although for our proof

of Lemma 2.2 we will adapt an argument of Belletini, Hoppe, Novaga & Orlandi

[8] who proved the corresponding statement for spatially compact timelike maximal

surfaces. In contrast with the Riemannian setting, there are infinitely many conformal

structures of simply-connected Lorentzian surfaces (Kulkarni [46]) so the existence of

such a conformal equivalence for any properly immersed timelike maximal surface is

far from obvious.

Remark 1.16 (The unit normal and a comparison with the Riemannian setting). In

terms of a spacelike unit normal along φ

N : R2 → S1+1 =
{

(sinhϕ, cosϑ coshϕ, sinϑ coshϕ) ∈ R1+2 : (ϑ, ϕ) ∈ [0, 2π)× R
}
,

Theorem 2.3 says that for every compact subset K ⊆ R2 the set N(K) is contained

in an open hemi-hyperboloid

S1+1
+ =

{
(sinhϕ, cosϑ coshϕ, sinϑ coshϕ) ∈ R1+2 : (ϑ, ϕ) ∈ (ϑ0 −

π

2 , ϑ0 + π

2 )× R
}

for some ϑ0 ∈ R, which is a hemi-sphere with respect to the Minkowski metric. The

image of N will be a single point if Im(φ) is a plane and we will give many examples

where it is a subset of S1+1 of non-empty interior, including examples where the

closure of Im(N) intersects both connected components of the boundary of a closed

hemi-hyperboloid in S1+1 (see §2.3). This could be compared with the counterpart

in the Riemannian setting, where we recall that for any complete minimal surface in

R3 the image of the unit normal vector is either a single point or it omits at most 4

points in the sphere S2 [30].
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Remark 1.17 (Failure of Theorem 2.3 in higher codimension). Theorem 2.3 does

not extend to higher codimension. Indeed, recall (§1.3.3) that Nguyen & Tian gave

an example of a smooth proper timelike maximal immersion φ : S1×R→ R1+3 in [59,

Appendix] and it is easy to see how this example may be adapted to give a smooth

proper timelike maximal immersion φ : R2 → R1+3.

1.4.2 Formation of singularities

Having proved Theorem 2.3, we will turn to the IVP for timelike maximal surfaces

(Definition 1.2). It may be shown that under mild conditions on the initial data

(C, V ) there will exist a local solution to the IVP (see Corollary 4.13 later). On

the other hand, it may be seen to follow from Theorem 2.3 that if Im(U0) contains

a closed semi-circle where U0 denotes the unit tangent along C (or equivalently, if

Im(C) contains a compact subset which is not a smooth graph) then there exists

no global solution to the IVP. Thus in this case a Cauchy evolution of (C, V ) must

become singular in finite time, either in the future or the past. A priori, there are two

possible mechanisms by which a singularity may occur: (1) the maximal surface fails

to remain timelike, or (2) the maximal surface fails to remain smooth. Our proof of

Theorem 2.3, however, does not shed any light on the nature of the singularity. Our

next theorem addresses this issue. We prove:

Theorem 3.1. Let Ω ⊆ R2 be an open set such that for some (s0, t0) ∈ R2 and

some ε > 0 one has {s0} × [t0 − ε, t0) ⊆ Ω and (s0, t0) ∈ ∂Ω. Let φ : sΩ → R1+2 be

a C1 map of the form φ(s, t) = (t, γ(s, t)) where γ satisfies 〈γs(s0, t), γt(s0, t)〉 = 0

for t ∈ [t0 − ε, t0) such that φ|Ω is a C2 timelike immersion. Write h for the mean

curvature scalar of φ and k(·, t) for the curvature of the (planar) curve γ(·, t). Suppose

|h(s, t)| ≤ C for (s, t) ∈ Ω and suppose that |γt(s0, t0)|2 = 1 (so that the spacelike unit

normal N along φ blows-up in Euclidean norm, limt↑t0 |N(s0, t)| =∞, and if φ is an
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immersion then φ is null at (s0, t0)). Then

∫ t0

t0−ε
|k(s0, t)|dt =∞.

Corollary 3.2 (C2 inextendibility). Let ε > 0, (s0, t0) ∈ R2 and φ : (s0 − ε, s0 +

ε)× (t0− ε, t0]→ R1+2 be a C1 immersion of the form φ(s, t) = (t, γ(s, t))2 such that

φ|(s0−ε,s0+ε)×(t0−ε,t0) is C2 and timelike with bounded mean curvature |h(s, t)| ≤ C for

(s, t) ∈ (s0 − ε, s0 + ε) × (t0 − ε, t0) and such that φ is null at the point (s0, t0) (i.e.

Im(dφ(s0,t0)) is a null plane in R1+2). Then φ is not C2.

It is readily checked that the hypotheses for Theorem 3.1 are met for the evolution

by isothermal gauge (Definition 1.7) and thus Theorem 3.1 gives a description of

singularity formation for timelike maximal surfaces.

Remark 1.18 (Comparison with Taylor expansion methods). Recall that we dis-

cussed in §1.3.1 some work of previous authors on singularity formation for time-

like maximal surfaces in R1+2 (recall that, generically, the phenomena is descibed in

isothermal gauge by the swallowtail of Figure 1.3) so let us compare Theorem 3.1

with the methods of singularity analysis discussed in §1.3.1. Those methods rely on a

Taylor expansion of the explicit representation formula (i.e. the evolution by isother-

mal gauge) about the point of singularity. In order to make this analysis one must

assume that certain terms in the Taylor expansion are non-vanishing, and so these

methods apply only to generic cases. But there exist non-generic cases in which these

methods cannot be applied. Indeed, it is possible to cook up examples of smooth

initial data (C, V ) such that, computing the Taylor expansion of the evolution by

isothermal gauge φ : Λ1 × R→ R1+2 of (C, V ) about the point of first singular time,

one finds that all terms in the Taylor expansion vanish (see Examples 4.14 and 4.15
2note that any causal surface admits a local parameterisation of this form by the implicit function

theorem
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for such cases). Theorem 3.1 does not rely on a representation formula (it applies to

the more general setting of surfaces of bounded mean curvature, where no represen-

tation formula is available) and it applies to the general case of singularity formation,

rather than the generic case.

1.4.3 Evolution by isothermal gauge and C1 inextendibility

From Theorem 2.3 it follows that if (C, V ) is an initial data for which Im(U0) contains

a closed semi-circle where U0 denotes the unit tangent vector along C, then there

exists no global solution to the IVP. From Corollary 3.2 it then follows that a Cauchy

evolution of (C, V ) will be C2 inextendible beyond some singular time. However, it

is still possible that there may exist a C1 extension beyond singular time. Indeed,

recall (§1.3.1) that for generic smooth initial data, at the first time of singularity the

limit curve will be of regularity C1,1/3. A complete understanding of C1 extendibility,

independent of gauge, is currently out of our reach. Nonetheless, we will proceed

in Chapter 4 to discuss one well-known extension beyond singular time: that given

by solving the equations globally in time by isothermal gauge (this is the method of

extension most popular in the physics literature, see e.g. [77, Chap. 7]).

Recall that for generic smooth initial data, the evolution by isothermal gauge in

a neighbourhood of the first singularity will look like a swallowtail (Figure 1.3). So,

generically, the evolution by isothermal gauge will not give a C1 extension beyond

singular time. However, it turns out that there do exist (non-generic) classes of initial

data for which the evolution by isothermal gauge gives a global C1 extension beyond

singular time. We present two such examples in Examples 4.14 and 4.15. In Example

4.14, a class of smooth initial data (C, V ) is given for which the evolution by isothermal

gauge φ : R2 → R1+2 of (C, V ) is such that Σ = Im(φ) is a C1 embedded causal surface

which is a smooth timelike maximal surface away from a pair of null lines. In this
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example Σ contains non-graphical compact subsets (compare with Theorem 2.3). In

Example 4.15, a class of smooth initial data (C, V ) is given for which the evolution by

isothermal gauge φ : R2 → R1+2 of (C, V ) is such that Σ = Im(φ) is a C1 embedded

doubly-periodic causal surface which is a smooth timelike maximal surface away from

a rectangular lattice of null points. In this example Σ is a graph, but not a C1 graph.

See Figures 4.3 and 4.4 respectively for numerical approximations of Examples 4.14

and 4.15.

In both of Examples 4.14 and 4.15, the spatial unit tangent vector φs(s,t)/|φs(s,t)|

(defined a priori only on R2 \ K) admits a continuous extension to a unit tangent

vector field along φ, and a common feature of both examples is that Im(U0) is exactly

a closed semi-circle. It turns out that this behaviour is borderline. We prove:

Theorem 4.16. Let (C, V ) be a C1 × C0 initial data where C : R → R1+2 is a

proper immersion and let φ : R2 → R1+2, φ(s, t) = (t, γ(s, t)) be the evolution of

(C, V ) by isothermal gauge (see §4.1 for the definition in low regularity). Writing

U0 : R → S1 for the unit tangent vector along the initial curve γ(·, 0), suppose that

Im(U0) contains an arc of length > π. Then there exists an open interval I ⊆ R such

that for every t∗ ∈ I either Im(γ(·, t∗)) is not a C1 immersed curve, or Im(γ(·, t∗))

is a C1 immersed curve but the spatial unit tangent U(·, t∗) = γs(·,t∗)/|γs(·,t∗)| (defined

only on the set {s : γs(s, t∗) 6= 0}) admits no extension to a continuous unit tangent

vector field along γ(·, t∗).

A couple of remarks about Theorem 4.16:

Remark 1.19 (Comparison with work of previous authors). In the case that the ini-

tial curve C : S1 → R1+2 is closed, the corresponding statement (i.e. the discontinuity

of the spatial unit tangent) was proved by Nguyen & Tian [59, Prop. 2.9 & Prop.

2.11] for smooth initial data and by Jerrard, Novaga and Orlandi [42, Thm 5.1] for

C1×C0 initial data. Theorem 4.16 extends the work of those authors to the spatially

38



non-compact case. Note that if C is closed or self-intersecting then necessarily Im(U0)

contains an arc of length > π (see Lemma 4.7 for a proof of this elementary fact).

For the proof of Theorem 4.16 we rely on a technical lemma (Lemma 4.18) and for

the proof of this lemma we follow [42].

Remark 1.20. In most cases, the discontinuity of the spatial unit tangent corre-

sponds to the curve Im(γ(·, t∗)) failing to be C1. There do exist, however, degenerate

cases for which Im(γ(·, t∗)) is a C1 curve but the unit tangent admits no continuous

extension along γ(·, t∗), as we will show in Example 4.20. We have no example for

which this situation occurs whilst Im(φ) is a C1 surface (globally) but we cannot rule

this out.

In Chapter 4 we also present some more detailed analysis of the evolution by

isothermal gauge. We observe that Theorem 3.1 may be applied directly in the

context of the isothermal gauge and we combine this with a localized singularity

statement (Proposition 4.5) to complement Theorem 2.3. We also observe that there

exist examples of smooth initial data (C, V ) where the curve C is self-intersecting for

which the evolution by isothermal gauge is singular only in the past (Remark 4.8).

We also present local and global existence results for timelike maximal surfaces which

are notable in that they require no decay on the initial data at infinity (Corollary

4.13 and Remark 4.10).

1.4.4 Initial-boundary value problems

In Chapters 5 & 6 of this thesis, we consider initial-boundary value problems (IBVPs)

for timelike maximal surfaces in R1+2. A notable example of a physical theory which

considers IBVPs for timelike maximal surfaces is the bosonic string with endpoints

attached to D-branes (the D stands for Dirichlet), see Johnson [43, Chap. 4].
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In Chapter 5 we consider an IBVP for a timelike maximal surface with timelike

boundary a future-directed timelike curve (which is an arbitrary timelike curve). We

first fix a conformal structure of the solution and derive a C2-compatibility condition

which this imposes on the initial-boundary data. We then define a notion of the

evolution by isothermal gauge for this IBVP and we prove that this gives a C2 proper

map which is a conformal timelike maximal immersion away from a (possibly empty)

singular set (Proposition 5.5). We analyse the behaviour of the evolution by isother-

mal gauge in a neighbourhood of a singular point and show that there is always a

curvature blow up (Lemma 5.8). It should be noted that Lemma 5.8 is suboptimal in

comparison with our situation for the IVP where Theorem 3.1 may be applied directly.

We present a simple example which illustrates both possible conformal structures of

null infinity (Example 5.10) and we derive a sufficient condition on initial-boundary

data for the singular set to be empty (Proposition 5.12). This condition implies in

particular a C1 stability result for the quadrant of a timelike plane (Remark 5.13) and

the condition is non-perturbative, in the sense that there exist initial-boundary data

which just fail to meet the condition for which the singular set is non-empty (Remark

5.14). We also treat in more detail the special case where the prescribed timelike

boundary is a half-line, where a representation formula may be written explicitely. In

particular, we give an example in this case (Example 5.17) where singularity forms

only outside of the domain of dependence of the initial-curve (i.e. singularity forms

as a result of waves “reflecting off the boundary”).

In Chapter 6 we briefly discuss applications to two further IBVPs: (i) for a time-

like maximal surface which intersects a given timelike surface orthogonally along a

single timelike boundary curve, and (ii) for a timelike maximal surface whose time-

like boundary consists of a pair of prescribed timelike curves. For (i) (which may be

viewed as a Neumann boundary condition), to keep the presentation simple, we treat
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only the case that the boundary surface is a timelike plane, although the method we

develop applies to any timelike boundary surface. Interestingly, we show that the

IBVP (i) may be reduced, by isothermal gauge considerations, to the one considered

in Chapter 5 (in other words we construct a Neumann to Dirichlet map). For (ii) we

treat only the case that the timelike boundary curves are parallel straight lines. In

fact the author does not know how to treat cases other than this (with the excep-

tion of a pair of boundary curves obtained as small, weighted perturbations of a pair

of timelike parallel lines) as the representation formulas become too complicated to

analyse. In both of (i) and (ii) we can fully classify solutions via an explicit repre-

sentation formula. Let us conclude this overview by stating in advance for the reader

just the latter result concerning case (ii).

Theorem 6.11. Let (C, V,Γ1,Γ2) be an initial-boundary data where the timelike

boundary curves Γ1,Γ2 : R → R1+2 are a pair of parallel straight lines Γ1(x0) =

(x0, 0, 0), Γ2(x0) = (x0, 1, 0) and where the initial data (C, V ) satsify appropriate

C2 compatibility conditions (see (6.17) later) and let φ : [0, λ] × R → R1+2 be the

evolution of (C, V,Γ1,Γ2) by isothermal gauge (see Definition 6.10 later). Write

A±(s) = (1, a±(s)) for the future-directed null vector fields along C such that

span
{
A+(s), A−(s)

}
= span

{
C ′(s), V (s)

}
.

Then φ is a C2 immersion iff there exist a pair of disjoint open semi-circles Λ+ ⊆ S1

and Λ− ⊆ S1 such that Im(a+) ⊆ Λ+ and Im(a−) ⊆ Λ−. Moreover if φ is a C2

immersion then φ is an embedding, Im(φ) is a C2 graph over some timelike plane,

and Im(φ) is invariant under the action on R1+2 by the group of isometries generated

by the “corkscrew” motion Q(x0, x1, x2) = (x0 +λ,−x1 + 1,−x2) (Q is a combination

of a translation of R1+2 in time (i.e. (x0, x1, x2) 7→ (x0 + λ, x1, x2)) and a spatial

rotation of R1+2 by π radians leaving invariant the line {(x0, 1
2 , 0) : x0 ∈ R} (i.e.
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(x0, x1, x2) 7→ (x0,−x1 + 1,−x2)) and so Q satisfies, in particular, the translation

identity Q2(x0, x1, x2) = (x0 + 2λ, x1, x2)).
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Chapter 2

Embeddedness of timelike maximal

surfaces

2.1 Construction of global isothermal coordinates

In this section we will prove the following two lemmas:

Lemma 2.1. Let φ : R2 → R1+2 be a smooth proper timelike immersion. Then there

exists a smooth diffeomorphism ψ : R2 → R2 such that φ′ = φ ◦ ψ is of the form

φ′(s, t) = (t, γ(s, t)) where γ = (γ1, γ2) satisfies |γs|2 = 1.

Lemma 2.2 (Existence of a smooth conformal equivalence with R1+1). Let φ : R2 →

R1+2 be a smooth proper timelike immersion with vanishing mean curvature. Then

there exists a smooth diffeomorphism ψ : R2 → R2 such that φ′ = φ ◦ψ is of the form

φ′(s, t) = (t, γ(s, t)) where γ = (γ1, γ2) satisfies

〈γs, γt〉 = 0 (2.1)

|γs|2 + |γt|2 = 1 (2.2)

γtt − γss = 0. (2.3)
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Proof of Lemma 2.1. The proof is a standard argument which relies on the fact that

φ0 is a Morse function. Let φ : R2 → R1+2 be a smooth proper timelike immersion.

For each t ∈ Im(φ0) write

Ct = {(y1, y2) ∈ R2 : φ0(y1, y2) = t}.

Since φ is timelike φ0 can have no critical points. Thus Ct is a smooth submanifold

of R2 for all t ∈ Im(φ0) by the implicit function theorem.

Let g = φ∗η be the induced Lorentzian metric on R2 and let X = ∇gφ
0, which is

a smooth nowhere-vanishing vector field on R2. Note that φ(Ct) = Im(φ) ∩ {x0 = t}

is spacelike so with respect to g the submanifolds Ct are spacelike and thus X is a

timelike vector field orthogonal to the submanifolds Ct.

Define T = 1
g(X,X)X and consider the flow of T . Let p ∈ R2 and let ξp : (a, b)→ R2

be the smooth inextendible integral curve of T through p so dξp
ds

(s) = T (ξp(s)) and

ξp(0) = p. Then d
ds

(φ0(ξp(s))) = (dφ0)ξp(s)(T (ξp(s))) = 1 and so

φ0(ξp(s)) = φ0(p) + s. (2.4)

We claim that b =∞ and a = −∞. Indeed, suppose we had b <∞. Since the curve

ξp is timelike and by (2.4), then φ(ξp([0, b))) would lie in the intersection of the time

slab 0 ≤ t ≤ b with the future-directed light cone with vertex at the point φ(p) i.e.

those points (x0, x1, x2) ∈ R3 such that

(x1 − φ1(p))2 + (x2 − φ2(p))2 ≤ (x0 − φ0(p))2

φ0(p) ≤ x0 ≤ φ0(p) + b

which is a compact set. Since φ is a proper map it would follow that the curve ξp([0, b))
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would lie in a compact set. As T is smooth it would then follow that ξp could be

smoothly extended up to s = b, contradicting inextendibility of ξp. So b = ∞ and

similarly a = −∞.

From (2.4) it is seen that the flow p 7→ ξp(t) maps C0 diffeomorphically onto Ct

for each t, thus we have shown Im(φ0) = R and we have a foliation of R2 given

by smooth curves Ct for t ∈ R. We claim that each Ct is connected. Indeed, for

p, q ∈ C0 let ω : [0, 1]→ R2 be a continuous path with ω(0) = p and ω(1) = q. Define

ω̂(s) = ξω(s)(−φ0(ω(s))). So ω̂(s) ∈ C0 for all s ∈ [0, 1] by (2.4) and ω̂ is a continuous

path with ω̂(0) = p and ω̂(1) = q. Thus C0 and hence each Ct is connected.

Let C0 be parameterised as C0(s) for s ∈ (−∞,∞) and define ψ : R2 → R2 by

ψ(s, t) = ξC0(s)(t).

By the group property of the flow, it is seen that ψ gives a bijection. Standard results

on smooth dependence on initial conditions for ODE show that ψ gives a smooth map

and since T is nowhere vanishing and orthogonal to C0, we have det(dψ)(s, 0) 6= 0 for

all s ∈ R and so it follows det(dψ)(s, t) 6= 0 for all (s, t) ∈ R2 (see eg. [20, Chapter

1]). Thus ψ is a diffeomorphism and we have φ′ = ψ ◦ φ satisfies φ′(s, t) = (t, γ(s, t)).

Finally, since φ is proper it follows that |γ(s, t)|2 →∞ as s→ ±∞ for each t. Thus we

may pass to an arclength parameterisation to ensure the condition |γs(s, t)|2 = 1.

Proof of Lemma 2.2. For this proof we adapt the arguments given in Belletini, Hoppe,

Novaga & Orlandi [8] and Nguyen & Tian [59], where the corresponding statement

was proved in the spatially compact case.

By Lemma 2.1 we may assume that φ is of the form φ(s, t) = (t, γ(s, t)) where

|γs|2 = 1. Since φ is timelike we have the bound |γt|2 < 1. Now, let s′ = s′(s, t), t′ = t

denote a smooth coordinate change, with ∂s′

∂s
> 0, and set γ′(s′, t′) = γ(s, t). We will

45



choose these new coordinates so that

〈γ′s′ , γ′t′〉 = 0. (2.5)

By the chain rule

γ′s′ =
(
∂s′

∂s

)−1

γs (2.6)

γ′t′ = −
(
∂s′

∂s

)−1 (
∂s′

∂t

)
γs + γt, (2.7)

and substituting expressions (2.6) and (2.7) and observing |γs|2 = 1 we see that (2.5)

will be satisfied provided

∂s′

∂t
− 〈γs, γt〉

∂s′

∂s
= 0. (2.8)

Equation (2.8) is a linear transport equation and may be solved by the method of

characteristics. The solution s′ is constant along characteristic curves (s(t), t) where

the s(t) are solutions to

ṡ(t) = −〈γs(s(t), t), γt(s(t), t)〉. (2.9)

Since the right hand side of (2.9) is smooth and since we have the a-priori bound

|〈γs, γt〉| < 1, (2.10)

smooth solutions to (2.9) exist for all t ∈ R and for each (s0, t0) there exists a unique

characteristic through (s0, t0) which crosses through the line {t = 0} precisely once.

Thus for any smooth function ρ : R→ R there is a unique smooth solution s′ to (2.8)
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satisfying the Cauchy data

s′(s, 0) = ρ(s).

The choice of Cauchy data ρ will be fixed later. For now, observe that that the

condition ∂s′

∂s
> 0 is equivalent to

ρ̇(s) > 0, (2.11)

and by the uniform bound on the characteristic speed (2.10) we have s′(s, t)→ ±∞

as s→ ±∞ for all t ∈ R provided

ρ(s)→ ±∞ (2.12)

as s → ±∞ holds. A smooth diffeomorphism ψ : R2 → R2 is thus well defined by

ψ−1(s, t) = (s′(s, t), t) provided ρ is chosen so that (2.11) and (2.12) hold.

We have verified (2.5) (which is (2.1) in the (s′, t′) coordinates) and we proceed

to show that a choice of ρ may be selected satisfying (2.11) and (2.12) so as to ensure

(2.2) and (2.3). The timelike maximal surface equations (Appendix B) read

∂i(
√
| det(g)|gi2) = 0 (2.13)

∂i(
√
| det(g)|gij∂jγ) = 0. (2.14)

Since the metric in the new coordinates is

g(s′, t′) = |γ′s′|2ds′2 + (−1 + |γ′t′ |2)dt′2
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equation (2.13) reads

∂t′

√√√√1− |γ′t′ |2
|γ′s′|2

= 0

which is equivalent to 1− |γ′t′(s′, t′)|2 = K(s′)2|γ′s′(s′, t′)|2. Thus the condition

|γ′s′(s′, t′)|2 + |γt′(s′, t′)|2 = 1

will follow for all (s′, t′) ∈ R2 provided ρ(s) is chosen such that

|γ′s′(s′, 0)|2 + |γ′t′(s′, 0)|2 = 1

(i.e K(s′)2 = 1) for all s′ ∈ R. From (2.6), (2.7) and (2.8) we have

|γ′s′(s′, 0)|2 + |γ′t′(s′, 0)|2 = |ρ̇(s)−1γs(s, 0)|2 + |γt(s, 0)− 〈γs(s, 0), γt(s, 0)〉γs(s, 0)|2

= ρ̇(s)−2 + |γt(s, 0)|2 − 〈γs(s, 0), γt(s, 0)〉2

which equals 1 provided

ρ̇(s) = (1− |γt(s, 0)|2 + 〈γs(s, 0), γt(s, 0)〉2)−1/2 = | det(g(s, 0))|−1/2.

Since φ is timelike, this ensures (2.11) and moreover by the bound

0 < | det(g(s, 0))| ≤ 1

we see

ρ(s) =
∫ s

∗
(| det(g(s, 0))|)−1/2 ds→ ±∞
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as s→ ±∞, which is (2.12). We have ensured (2.1) and (2.2) and as the metric now

reads

g(s′, t′) = |γ′s′(s′, t′)|2
(
ds′2 − dt′2

)
,

the equation γ′t′t′ − γ′s′s′ = 0 follows from (2.14). This completes the proof.

2.2 Embeddedness of timelike maximal surfaces

In this section we will prove

Theorem 2.3. Let φ : R2 → R1+2 be a smooth proper timelike immersion with van-

ishing mean curvature. Then φ is an embedding. Moreover, for each compact subset

K ⊆ φ(R2) there is a timelike plane P ⊆ R1+2 such that K is a smooth graph over

P .

To prove Theorem 2.3, in light of Lemma 2.2 let us consider a smooth proper

timelike immersion φ : R2 → R1+2 of the form

φ(s, t) = (t, γ(s, t)) (2.15)

where γ = (γ1, γ2) satisfies

〈γs, γt〉 = 0 (2.16)

|γs|2 + |γt|2 = 1 (2.17)

γtt − γss = 0. (2.18)
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Define

a±(s) = γt(s, 0)± γs(s, 0), (2.19)

so that |a±(s)|2 = 1 by (2.16)–(2.17) (i.e. a± give the spatial directions of the outgoing

and incoming null tangent vectors to φ(R2) along the initial curve φ(·, 0)). The

following Lemma shows that the images of the outgoing and incoming null directions

must be disjoint on a smooth timelike properly immersed maximal surface.

Lemma 2.4. Let φ : R2 → R1+2 be a smooth, proper, timelike immersion of the form

(2.15) where γ satisfies (2.16)–(2.18) and define a± by (2.19). Then a+(ξ) 6= a−(η)

for all ξ, η ∈ R.

Proof. Since γ satisfies the wave equation (2.18) we have d’Alembert’s formula

γ(s, t) = 1
2

(
γ(s+ t, 0) + γ(s− t, 0) +

∫ s+t

s−t
γt(ξ, 0) dξ

)
. (2.20)

Differentiating gives

γs(s, t) = 1
2 (γs(s+ t, 0) + γs(s− t, 0) + γt(s+ t, 0)− γt(s− t, 0))

= 1
2 (a+(s+ t)− a−(s− t)) .

(2.21)

Since φ is an immersion γs(s, t) 6= 0 for all (s, t) ∈ R2 and thus a+(ξ) 6= a−(η) for all

ξ, η ∈ R as claimed.

Remark 2.5. It may be observed that Lemma 2.4 is a direct consequence of the

conformal structure of a properly immersed timelike maximal surface (Lemma 2.2)

together with Property 1.5.

Lemma 2.6. Let M > 0 and let a± : [−M,M ] → R2 be continuous functions satis-

fying |a±|2 = 1 and a+(ξ) 6= a−(η) for all ξ, η ∈ [−M,M ]. Then there exists ω ∈ R2,
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|ω|2 = 1 such that

〈a+(ξ)− a−(η), ω〉 > 0 (2.22)

for all ξ, η ∈ [−M,M ].

Proof. A = Im(a+) is a non-empty connected closed proper subset of S1, so we may

write

A = {(cosα, sinα) : α ∈ [α1, α2]}

for some α1, α2 ∈ R satisfying 0 < α2 − α1 < 2π. Defining ω = (cos α1+α2
2 , sin α1+α2

2 )

it follows by trigonometry that 〈a, ω〉 > 〈b, ω〉 for all a ∈ A, b ∈ S1 \ A. Since it is

assumed Im(a−) ⊆ S1 \ A the claim is proved.

We now have the tools to hand to prove Theorem 2.3.

Proof of Theorem 2.3. Let φ : R2 → R1+2 be a smooth proper timelike immersion

with vanishing mean curvature. By Lemma 2.2, we may take φ to be of the form

φ(s, t) = (t, γ(s, t)) where γ satisfies (2.16)–(2.18).

Let M > 0 and define the characteristic diamond

DM = {(s, t) : |s|+ |t| ≤M} ⊆ R2. (2.23)

To prove the theorem, we will show that φ|DM is injective and φ(DM) is a smooth

graph over a timelike plane PM . Since M is arbitrary, from this it will follow that

φ is injective and thus an embedding. Since φ is proper, given any compact subset

K ⊆ φ(R2), we may choose M sufficiently large such that K ⊆ φ(DM), so that K

will thus be a smooth graph over the plane PM . The theorem will thus be proved.
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Defining a± as in (2.19) and by Lemma 2.4 we have that a+(ξ) 6= a−(η) for all

ξ, η ∈ R. So by Lemma 2.6 there exists ωM ∈ R2, |ωM |2 = 1 such that

〈a+(ξ)− a−(η), ωM〉 > 0

for all ξ, η ∈ [−M,M ]. From (2.21) it follows

〈γs(s, t), ωM〉 = 1
2〈a+(s+ t)− a−(s− t), ωM〉 > 0 (2.24)

for all (s, t) ∈ DM .

From (2.24) it is now routine to show that φ|DM is an embedding and there is a

timelike plane PM ⊆ R1+2 such that φ(DM) is a smooth graph over PM , but let us go

through the argument for completeness. By choosing inertial coordinates (x0, x1, x2)

on R1+2 appropriately, we may assume for convenience that ωM = (1, 0). Then, in the

new coordinates, keeping the same notation for the parameterisation, (2.24) reads

γ1
s (s, t) > 0 (2.25)

for all (s, t) ∈ DM . Let PM be the x0–x1 plane in these new coordinates.

Write D′M = {(t, γ1(s, t)) : (s, t) ∈ DM} ⊆ R2 and let F : DM → D′M be defined

by F (s, t) = (t, γ1(s, t)). From (2.25) it follows by monotonicity that F is bijective,

and moreover by the inverse function theorem that F is a smooth diffeomorphism.

Inverting F as F−1(x0, x1) = (s(x0, x1), t(x0, x1)) gives

φ(DM) = φ ◦ F−1(D′M)

=
{(
x0, x1, γ2(s(x0, x1), t(x0, x1))

)
: (x0, x1) ∈ D′M

} (2.26)

so we have shown φ(DM) is a smooth graph over the x0–x1 plane. Moreover, it follows
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from (2.26) that φ◦F−1 : D′M → R1+2 is injective, so φ|DM is injective. This completes

the proof.

2.3 Examples of graphical and non-graphical

smooth properly embedded timelike maximal

surfaces

Example 2.7 (Smooth properly embedded graphical timelike maximal surfaces).

Let f : R → R be any smooth function and let G = {(u, f(u)) : u ∈ R} ⊆ R2 be

the graph of f . Let c : R → R2 be a smooth parameterisation of G by arclength,

so Im(c) = G and |c′(s)| = 1. Define γ(s, t) = 1
2 (c(s+ t) + c(s− t)) and φ : R2 →

R1+2 by φ(s, t) = (t, γ(s, t)). It may be checked that φ defines a smooth proper

timelike maximal embedding1 and φ(R2) is a smooth graph over the x0–x1 plane with

φ(R2) ∩ {x0 = 0} = G.

Example 2.8 (Smooth properly embedded doubly-periodic graphical timelike max-

imal surfaces). Let f : R → R be a smooth function such that f(0) = 0 and

f(u) = f(u + 1) for all u ∈ R (i.e. f is periodic with period 1). As in Ex-

ample 2.7, let c : R → R2 parametrize the graph of f by arclength, and define

γ(s, t) = 1
2 (c(s+ t) + c(s− t)) and φ : R2 → R1+2 by φ(s, t) = (t, γ(s, t)). Note

that c(s + L) = c(s) + (1, 0), where L is the length of one period of f and neces-

sarily L ≥ 1 with equality if and only if f ≡ 0 (i.e. if and only if the graph of f

is a straight line). Now let us observe that Im(φ) is doubly periosic. Indeed, ob-

serve that φ(s + L, t) = φ(s, t) + (0, 1, 0) and φ(s, t + L) = φ(s, t) + (L, 0, 0). Thus,

defining T : R1+2 → R1+2 by T (x0, x1, x2) = (x0 + L, x1, x2) for a translation in time
1Note that φ here is precisely the evolution of (C, V ) by isothermal gauge with initial velocity

V = (1, 0, 0)
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and S : R1+2 → R1+2 by S(x0, x1, x2) = (x0, x1 + 1, x2) for a translation in space, we

see φ(R2) is invariant under both T and S. Thus φ(R2) is periodic in the direction

(1, 0, 0) with period L and periodic in the direction (0, 1, 0) with period 1.

Example 2.9 (Smooth properly embedded non-graphical timelike maximal sur-

faces.). Let c : R → R2 be a parametrisation of a smooth curve by arclength such

that the following hold:

1. c(s) = (0,−s), for s ∈ (−∞,−1],

2. c′1(s) > 0 for s ∈ (−1,∞),

3. as s→∞, c′(s)→ (0, 1).

See Figure 2.1 for a rough illustration of such a curve. Note that every compact

subset of Im(c) is a smooth graph but Im(c) is not a smooth graph. Define γ(s, t) =

Figure 2.1: A smooth planar curve which is not a graph for which every
compact subset is a smooth graph.

1
2 (c(s+ t) + c(s− t)) and φ : R2 → R1+2 by φ(s, t) = (t, γ(s, t)). Then φ is a smooth

proper timelike maximal embedding. For every compact subset K ⊆ φ(R2) there is a

timelike plane P ⊆ R1+2 such that K is a smooth graph over P , which is consistent

with Theorem 2.3, but we now claim that Σ = φ(R2) is not a graph. To see this,

observe that φ(s, t) = (t, 0,−s) for s ≤ −1 − |t|, so Σ contains an open quadrant

Q = {(t, 0,−s) : s < −1 − |t|} of the plane {x1 = 0}. For each t ∈ R, the curve
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s 7→ φ(s, t) asymptotes to the plane {x1 = 1} as s→∞, and Σ forms the boundary

of an open subset of R1+2 which is sandwiched between the planes {x1 = 0} and

{x1 = 1} (i.e. Σ = ∂B where B ⊆ {0 < x1 < 1}). It then follows that for every point

q ∈ Q ⊆ Σ, every straight line in R1+2 through q intersects Σ at at least 2 distinct

points. Thus Σ is not a graph. In this example, the image of the unit normal N is

not contained in any open hemi-hyperboloid, but is contained in the union of an open

hemi-hyperboloid with one connected component of its boundary.
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Chapter 3

Curvature blow-up

3.1 C2 inextendibility

We now turn to the question of whether it is possible to relax the notion of a timelike

maximal surface, either by allowing for surfaces which are Ck for some k ≥ 1 or by

allowing for null points (i.e. degenerate hyperbolicity), in such a way as to continue

beyond singular time in a Cauchy evolution. Our first result in this direction will be

that if the evolution fails to remain timelike, then the maximal surface must fail to

be C2 immersed. In fact, we will deduce this from an observation which holds for

more general evolutions of surfaces of only bounded mean curvature.

Theorem 3.1. Let Ω ⊆ R2 be an open set such that for some (s0, t0) ∈ R2 and

some ε > 0 one has {s0} × [t0 − ε, t0) ⊆ Ω and (s0, t0) ∈ ∂Ω. Let φ : sΩ → R1+2 be

a C1 map of the form φ(s, t) = (t, γ(s, t)) where γ satisfies 〈γs(s0, t), γt(s0, t)〉 = 0

for t ∈ [t0 − ε, t0) such that φ|Ω is a C2 timelike immersion. Write h for the mean

curvature scalar of φ and k(·, t) for the curvature of the (planar) curve γ(·, t). Suppose

|h(s, t)| ≤ C for (s, t) ∈ Ω and suppose that |γt(s0, t0)|2 = 1 (so that the spacelike unit

normal N along φ blows-up in Euclidean norm, limt↑t0 |N(s0, t)| =∞, and if φ is an
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immersion then φ is null at (s0, t0)). Then

∫ t0

t0−ε
|k(s0, t)|dt =∞. (3.1)

Proof. By taking ε > 0 sufficiently small, we may ensure that |γt(s, t)|2 > 0 for

(s, t) ∈ Ω ∩ Bε(s0, t0). It may then be seen that a spacelike unit normal vector N to

φ(Ω ∩Bε(s0, t0)) is given along {s0} × [t0 − ε, t0) by

N(s0, t) = 1
(1− |γt(s0, t)|2)1/2

 |γt(s0, t)|

n(s0, t)

 ,

where

n(s0, t) = γt(s0,t)/|γt(s0,t)|

is a unit normal to the planar curve γ(·, t) at the point s = s0.

The curvature of the cross sections γ(·, t) is given at s = s0 by

k(s0, t) = 〈γss(s0, t), n(s0, t)〉
|γs(s0, t)|2

.

Along {s0} × [t0 − ε, t0), the components of the first fundamental form E(s, t)ds2 +

2F (s, t)dsdt+G(s, t)dt2 are calculated as

E(s0, t) = |γs(s0, t)|2

F (s0, t) = 〈γs(s0, t), γt(s0, t)〉 = 0

G(s0, t) = −1 + |γt(s0, t)|2,

the components of the second fundamental form e(s, t)ds2 + 2f(s, t)dsdt + g(s, t)dt2
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are

e(s0, t) = −〈γss(s0, t), n(s0, t)〉
(1− |γt(s0, t)|2)1/2

f(s0, t) = −〈γst(s0, t), n(s0, t)〉
(1− |γt(s0, t)|2)1/2

g(s0, t) = −〈γtt(s0, t), n(s0, t)〉
(1− |γt(s0, t)|2)1/2

,

and the mean curvature scalar is

h(s0, t) = e(s0, t)
E(s0, t)

+ g(s0, t)
G(s0, t)

= − 〈γss(s0, t), n(s0, t)〉
|γs(s0, t)|2(1− |γt(s0, t)|2)1/2

+ 〈γtt(s0, t), n(s0, t)〉
(1− |γt(s0, t)|2)3/2

.

(3.2)

Rearranging (3.2) gives the identity

(1− |γt(s0, t)|2)1/2h(s0, t) + k(s0, t) = 〈γtt(s0, t), n(s0, t)〉
1− |γt(s0, t)|2

. (3.3)

Next we claim that

∫ t0

t0−ε

〈γtt(s0, t), n(s0, t)〉
1− |γt(s0, t)|2

=∞. (3.4)

To show (3.4), write µ(t) := |γt(s0, t)|2 so that

〈γtt(s0, t), n(s0, t)〉
1− |γt(s0, t)|2

= 〈γtt(s0, t), γt(s0, t)〉
|γt(s0, t)|(1− |γt(s0, t)|2) =

1
2 µ̇(t)

µ(t)1/2(1− µ(t)) .

We have by assumption µ(t) ↑ 1 as t ↑ t0, so

∫ t0

t0−ε

µ̇(t)
1− µ(t)dt =

∫ t0

t0−ε
− d

dt
(log(1− µ(t)))dt =∞

from which (3.4) follows. As |h(s, t)| ≤ C, (3.1) then follows from (3.3) and (3.4) and
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the theorem is proved.

Corollary 3.2 (C2 inextendibility). Let ε > 0, (s0, t0) ∈ R2 and φ : (s0 − ε, s0 +

ε)× (t0− ε, t0]→ R1+2 be a C1 immersion of the form φ(s, t) = (t, γ(s, t))1 such that

φ|(s0−ε,s0+ε)×(t0−ε,t0) is C2 and timelike with bounded mean curvature |h(s, t)| ≤ C for

(s, t) ∈ (s0 − ε, s0 + ε) × (t0 − ε, t0) and such that φ is null at the point (s0, t0) (i.e.

Im(dφ(s0,t0)) is a null plane in R1+2). Then φ is not C2.

Proof of Corollary 3.2. Let φ : (s0−ε, s0 +ε)×(t0−ε, t0]→ R1+2, φ(s, t) = (t, γ(s, t))

be a C1 immersion which is a C2 timelike immersion with bounded mean curvature

on (s0− ε, s0 + ε)× (t0− ε, t0) and which is null at the point (s0, t0). For a sufficiently

small ε0 ∈ (0, ε), let r : [t0 − ε0, t0]→ R be a solution to the terminal value problem

ṙ(t) = −〈γs(r(t), t), γt(r(t), t)〉
|γs(r(t), t)|2

; r(t0) = s0,

which satisfies |r(t)−s0| < ε
2 for all t ∈ [t0−ε0, t0] (such a solution exists by the Peano

existence theorem, see e.g. [20, Chap. 1]). We have r ∈ C2([t0−ε0, t0))∩C1([t0−ε0, t0]).

Define Ω = (−ε0, ε0) × (t0 − ε0, t0). Let φ′ : sΩ → R1+2, φ′(s′, t′) = (t′, γ′(s′, t′))

where γ′ = (γ′1, γ′2) is given by γ′(s′, t′) = γ(r(t′) + s′, t′). Then φ′ is a C1 immersion

which is a C2 timelike immersion with bounded mean curvature on Ω and φ′(0, t0) =

φ(s0, t0). By the chain rule,

〈γ′s′(s′, t′), γ′t′(s′, t′)〉 = ṙ(t′)|γs(r(t′) + s′, t′)|2 + 〈γs(r(t′) + s′, t′), γt(r(t′) + s′, t′)〉

so by construction we have 〈γ′s′(0, t′), γ′t′(0, t′)〉 = 0 for t′ ∈ (t0 − ε0, t0). As φ′ is null

at (0, t0), it may be seen that |γ′t′(0, t0)|2 = 1. So since |h(s′, t′)| ≤ C for (s′, t′) ∈ Ω

we see φ′ satisfies the conditions for Theorem 3.1, so lim supt′↑t0 |k(0, t′)| =∞ where
1note that any causal surface admits a local parameterisation of this form by the implicit function

theorem
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k(·, t′) is the curvature of the planar cross sections γ′(·, t′). Thus the curvatures of

the curves γ(·, t) are not uniformly bounded for t ∈ [t0 − ε, t0] so φ is not C2.

3.2 The shrinking circle revisited

Example 3.3 (Curvature blow-up for the shrinking circle). Let us revisit the shrink-

ing circle of Example 1.10. Define φ : S1 × (−π
2 ,

π
2 ) → R1+2 by φ(s, t) = (t, γ(s, t))

where γ(s, t) = (cos t cos s, cos t sin s). Then h(s, t) = 0 and φ is a timelike maxi-

mal immersion. In addition, 〈γs, γt〉 = 0 (the parameterisation is orthogonal) and

|γt(s, t)|2 ↑ 1 as t ↑ π
2 . Observe |k(s, t)| = | cos t|−1, and

∫ π
2

0 |k(s, t)|dt = ∞ for all s,

which is consistent with (3.1). For this example, we may study the rate of curvature

blow-up in more detail. The element of arclength along γ(·, t) is dl(s) = | cos t|ds, so

for p, q ∈ (1,∞) one has

‖k‖Lq((0,π2 );Lp(S1)) =
(∫ π

2

0

(∫ 2π

0
|k(s, t)|pdl(s)

) q
p

dt

) 1
q

= (2π)
1
p

(∫ π
2

0
| cos t|

q(1−p)
p dt

) 1
q

and since q(1−p)
p
≤ −1 iff 1

p
+ 1

q
≤ 1 we deduce that

‖k‖Lq((0,π2 );Lp(S1)) =∞ iff 1
p

+ 1
q
≤ 1.

Remark 3.4 (Inextendibility of the shrinking circle). The shrinking circle of Example

3.3 is future (resp. past) C1 inextendible beyond the singular time π
2 (resp. −π

2 ). In

fact, the maximal extension of φ
(
(S1 × (−π

2 ,
π
2 )
)
to a C0 submanifold of R1+2 is given

by taking the closure of φ
(
S1 × (−π

2 ,
π
2 )
)
in R1+2 i.e. by attaching one point at x0 = π

2

and one point at x0 = −π
2 . In §4.3 we will see examples where the evolution is C2

inextendible but C1 extendible.
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Remark 3.5 (Conformal structure of the shrinking circle). It is an interesting ex-

ercise to observe that the shrinking circle φ
(
S1 × (−π

2 ,
π
2 )
)
⊆ R1+2 of Example 3.3

is smoothly conformally equivalent to the de Sitter sphere S1+1 = {−(x0)2 + (x1)2 +

(x2)2 = 1} ⊆ R1+2.
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Chapter 4

C1 extendibility

4.1 Evolution by isothermal gauge

We will now proceed to concern ourselves with C1 evolutions by isothermal gauge, so

let us briefly review the method of isothermal gauge (§1.2.3) for C1×C0 initial data.

Let C : R→ R1+2 be a Ck (k ≥ 1) proper immersion of the form C(s) = (0, c(s))

and let V be a Ck−1 future-directed timelike vector field along C. We call (C, V )

an initial data. From the point of view of the IVP the prescription of initial data

is equivalent to a prescription of a Ck curve C and a Ck−1 distribution of timelike

tangent planes along C, so without loss of generality we may assume V is of the

form V (s) = (1, v(s)) where 〈c′(s), v(s)〉 = 0. Since V is timelike implies |v(s)| <

1 we may then reparametrize the curve C(s) to ensure the additional constraint

|c′(s)|2 + |v(s)|2 = 1 holds. The pair (C ′(s), V (s)) now gives an orthogonal frame

along the initial data and the timelike planes span{C ′(s), V (s)} are spanned by the

future-directed null vectors

A±(s) = V (s)± C ′(s) = (1, v(s)± c′(s)) = (1, a±(s)).
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We say that the initial data is parametrized isothermally. Define a Ck map φ : R2 →

R1+2 by φ(s, t) = (t, γ(s, t)) where γ = (γ1, γ2) is given by d’Alembert’s formula

γ(s, t) = 1
2

(
c(s+ t) + c(s− t) +

∫ s+t

s−t
v(ζ)dζ

)
. (4.1)

The formula (4.1) implies that γtt − γss = 0, γ(s, 0) = c(s), γt(s, 0) = v(s) with the

wave equation understood in the weak sense when γ is not C2. The isothermal gauge

conditions |γt(s, t)± γs(s, t)|2 = 1 are satisfied for all (s, t) ∈ R2 by (4.1) and we call

φ : R2 → R1+2 the evolution of (C, V ) by isothermal gauge.

Write Σ = φ(R2) and define the closed (possibly empty) singular set by

K = {(s, t) ∈ R2 : γs(s, t) = 0} =
{

(s, t) ∈ R2 : a+(s+ t) = a−(s− t)
}

(4.2)

so that φ gives a Ck immersion on R2 \K. Moreover, it may be seen that φ defines a

Ck timelike maximal immersion on R2 \ K which is a conformal map with respect to

the metric ds2 − dt2 on R2 \ K. We write

Σsing = φ(K).

By continuity Σ\Σsing contains a neighbourhood of Im(C) and by construction Σ\Σsing

gives a Ck timelike maximal immersed surface containing C and tangent to the vector

field V along C. The following simple topological result shows that this is indeed a

global evolution.

Lemma 4.1. Let φ : R2 → R1+2, φ(s, t) = (t, γ(s, t)) be an evolution by isothermal

gauge for a C1 × C0 initial data (C, V ) where C = γ(·, 0) is a proper immersion i.e.

lim sups→±∞ |γ(s, 0)| =∞. Then lim sups→±∞ |γ(s, t)| =∞ for all t ∈ R so that each

map γ(·, t) is proper and thus φ is proper.
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Proof. For each t ∈ R since |γt| ≤ 1 we have |γ(s, t)| ≥ |γ(s, 0)| −
∫ t

0 |γt(s, t̃)|dt̃ ≥

|γ(s, 0)| − t so lim sups→±∞ |γ(s, t)| =∞ for all t ∈ R as claimed.

Let us now observe that Σsing is singular, at least in the sense that it consists of

null points. A similar observation to the following was made, as part of a broader

context, in [42, Theorem 3.1].

Lemma 4.2. Let φ : R2 → R1+2 be an evolution by isothermal gauge for a C1 × C0

initial data (C, V ) and suppose K as defined in (4.2) is non-empty. Suppose that for

some neighbourhood U of a point q ∈ ∂K there exists a C1 embedded surface T ⊆ R1+2

such that φ(U) ⊆ T . Then T is null at φ(q).

Proof. Suppose that U is a neighbourhood of q ∈ ∂K such that φ(U) ⊆ T where T is

some C1 embedded surface. For each point (s, t) ∈ U \K the tangent space Tφ(s,t)T is

a timelike plane which intersects the light cone along null directions spanned by the

nowhere vanishing null vectors

φs(s, t) + φt(s, t) = A+(s+ t) = (1, a+(s+ t))

and

φs(s, t)− φt(s, t) = A−(s− t) = (1, a−(s− t)).

Choose a sequence of points (sk, tk) ∈ U \K with (sk, tk)→ q = (s∗, t∗). Since a+(s∗+

t∗) = a−(s∗ − t∗) it follows that lim(sk,tk)→(s∗,t∗) a+(sk + tk) = lim(sk,tk)→(s∗,t∗) a−(sk −

tk), so the null lines along which Tφ(sk,tk)T intersects the light cone converge. So

Tφ(s∗,t∗)T = lim(sk,tk)→(s∗,t∗) Tφ(sk,tk)T must be a null plane.

The following result is an immediate consequence of Theorem 3.1.

Lemma 4.3. Let φ : R2 → R1+2 be an evolution by isothermal gauge for a C2 × C1

initial data (C, V ) and suppose K as defined in (4.2) is non-empty. Suppose for
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some q = (s0, t0) ∈ K there exists ε > 0 and an open set Ω ⊆ R2 \ K such that

{s0} × [t0 − ε, t0) ⊆ Ω. Then, writing k(·, t) for the curvature of the (planar) curves

γ(·, t), we have

∫ t0

t0−ε
|k(s0, t)|dt =∞. (4.3)

In particular, for every neighbourhood U of q, the set φ(U) is not a subset of any C2

immersed surface in R1+2.

Proof. (4.3) follows immediately from Theorem 3.1. Suppose now for a contradiction

that for some neighbourhood U of q there exists a C2 immersed surface T ⊆ R1+2

such that φ(U) ⊆ T . Let {Vi}i∈I be an open cover of T by C2 embedded surfaces,

and choose j ∈ I such that q ∈ φ−1(Vj). Then defining Uj = φ−1(Vj), we have a

neighbourhood Uj of q such that φ(Uj) = Vj is a C2 embedded surface. But then by

Lemma 4.2 Vj is null at φ(q) so by the implicit function theorem there exists a C2

parametrization of Vj in some neighbourhood of φ(q) of the form (s, t) 7→ (t, ψ(s, t)).

But that implies the cross sections ψ(·, t) have uniformly bounded curvatures k(·, t)

in a neighbourhood of q, in contradiction with (4.3).

4.2 Some analysis of singular points

Let (C, V ) be a Ck × Ck−1 initial data parametrized isothermally. Write

U0(s) = c′(s)
|c′(s)| ∈ S

1 ⊆ R2 (4.4)

for the unit tangent map along C. Let ϑ : R→ R be a lift of U0 : R→ S1, so that

U0(s) = (cosϑ(s), sinϑ(s)). (4.5)
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If C is C2 then ϑ is related to the curvature k of C by

∫ s2

s1
k(s)dl(s) = ϑ(s2)− ϑ(s1)

where dl(s) = |c′(s)|ds is the element of arclength along C.

Since 〈c′(s), v(s)〉 = 0 we may define a function

µ : R→ (−1, 1)

such that

v(s) = µ(s)U0(s)⊥ = µ(s)(− sinϑ(s), cosϑ(s)). (4.6)

Next, recalling the definition a±(s) = v(s)± c′(s), by trigonometric identities it may

be seen that the quantities

α+(s) = ϑ(s) + arcsin(µ(s)) (4.7)

α−(s) = ϑ(s)− arcsin(µ(s))− π (4.8)

define a pair of lifts for a±, so that

a±(s) = (cosα±(s), sinα±(s)),

see Figure 4.1.

Remark 4.4. The function µ defined by (4.6) may be given a geometric interpretation

as follows. Defining ϕ(s) = arctanhµ(s) we see that

N(s) = (sinhϕ(s),− coshϕ(s) sinϑ(s), coshϕ(s) cosϑ(s))
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Figure 4.1: The isothermal frame in angular coordinates.

defines a spacelike unit normal to TC(s)Σ = span{C ′(s), V (s)}. The angles (ϑ, ϕ)

may be thought of as longitude-latitude coordinates on the 1-sheeted hyperboloid

S1+1 = {−(x0)2 + (x1)2 + (x2)2 = 1} ⊆ R1+2 (i.e. the de Sitter sphere).

Denote the characteristic diamond associated to the interval [s1, s2] by

D(s1, s2) =
{

(s, t) ∈ R2 : s1 + |t| ≤ s ≤ s2 − |t|
}
. (4.9)

The following result is a localized singularity statement for C1 evolutions by isother-

mal gauge (compare with Theorem 2.3).

Proposition 4.5. Let φ : R2 → R1+2 be an evolution by isothermal gauge for a

C1 × C0 initial data (C, V ). Writing U0 for the unit tangent along C as in (4.4),

suppose that Im(U0) contains a closed semi-circle i.e. suppose there exist s1 < s2 such

67



that

|ϑ(s2)− ϑ(s1)| ≥ π

where ϑ is as in (4.5). Then, with K as in (4.2) and D(s1, s2) as in (4.9), it follows

that K ∩D(s1, s2) is non-empty.

Remark 4.6. Note that the same conclusion cannot be reached if Im(U0) contains

only a half-closed semi-circle. Indeed, in Example 2.9 we had Im(ϑ) = [−π
2 ,

π
2 ) whilst

K = ∅.

Proof of Proposition 4.5: Identities (4.7) and (4.8) give

|(α+(s2)− α+(s1)) + (α−(s2)− α−(s1))| = 2 |ϑ(s2)− ϑ(s1)| ≥ 2π

thus a+([s1, s2]) and a−([s1, s2]) cannot form disjoint subsets of S1 and so there exist

ξ, η ∈ [s1, s2] such that a+(ξ) = a−(η).

Note that Proposition 4.5 applies immediately to the case of a self-intersecting

curve C thanks to the following elementary result.

Lemma 4.7. Suppose c : R→ R2 is a C1 immersion with a point of self-intersection

i.e. suppose there exist r1 < r2 such that c(r1) = c(r2). Let U0 denote the unit tangent

along c as in (4.4). Then U0([r1, r2]) contains an arc of length > π.

Proof. Since c(r1) = c(r2), we have

∫ r2

r1
〈c′(s), ω〉ds = 0 (4.10)

for every ω ∈ R2. But we now claim that if U0([r1, r2]) is contained in a closed
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semi-circle, then there exists an ω0 ∈ R2 such that

∫ r2

r1
〈c′(s), ω0〉ds > 0. (4.11)

Indeed, to show (4.11), first note that if U0([r1, r2]) = {p} is a single point, then (4.11)

clearly holds with ω0 = p, so we may assume U0([r1, r2]) is not a single point. Next, by

rotating coordinates, take U0([r1, r2]) to be contained in the closed upper semi circle

S1
+ = {(x1, x2) : x2 =

√
1− (x1)2 ≥ 0}. Then taking ω0 = (0, 1) gives 〈c′(s), ω0〉 ≥ 0

for all s ∈ [r1, r2] and 〈c′(s0), ω0〉 > 0 for some s0 ∈ [r1, r2], and (4.11) follows. Since

(4.10) and (4.11) are incompatible, we conclude that U0([r1, r2]) contains an arc of

length > π as claimed.

Remark 4.8 (A self-intersecting initial data for which only the past evolution by

isothermal gauge is singular). Proposition 4.5 states that if U0(s1, s2) contains a closed

semi-circle then K ∩D(s1, s2) is non-empty. But this does not tell us whether singu-

larity occurs for t > 0 or t < 0 (i.e. whether singularity is in the future or the past

Cauchy evolution of (C, V )). In fact, it is a simple exercise to cook up an initial data

(C, V ) for which the curve C is self-intersecting and for which a+(ξ) 6= a−(η) for all

ξ ≥ η so that K ∩ {t ≥ 0} = ∅. An example of such an initial data is sketched in

Figure 4.2.

Proposition 4.5 gives a sufficient condition in terms of ϑ for K ∩ D(s1, s2) to be

non-empty. We can also give a sufficient condition for no singularity in terms of ϑ

and the initial velocity v.

Lemma 4.9. Let φ : R2 → R1+2 be an evolution by isothermal gauge for a C1 × C0

initial data (C, V ) which is parametrized so that V (s) = (1, v(s)) where 〈c′(s), v(s)〉 =
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Figure 4.2: A sketch of an initial data (C, V ) for which C(s) = (0, c(s)) is a
self-intersecting curve and V (s) = (1, v(s)) is chosen (with v(s) = 0 outside
of a compact subset) such that a+(ξ) 6= a−(η) for all ξ ≥ η (so that the future
evolution by isothermal gauge of (C, V ) is non-singular).

0. Writing ϑ as in (4.5), suppose that

sup
r1,r2∈[s1,s2]

|ϑ(r2)− ϑ(r1)|2 + sup
r∈[s1,s2]

|v(r)|2 < 1. (4.12)

Then with K as in (4.2) and D(s1, s2) as in (4.9), it follows that

K ∩D(s1, s2) = ∅. (4.13)

Proof. Writing a± as in (2.19) it follows easily from (4.12) and trigonometric identities

that a+(ξ) 6= a−(η) for ξ, η ∈ [s1, s2] (refer to Figure 4.1). The claim follows.

Remark 4.10 (Small data global existence). If the initial data (C, V ) satisfies the

estimate (4.12) on [s1, s2] = R then by Lemma 4.9 it follows that K = ∅ so the

evolution by isothermal gauge φ parameterises a properly immersed timelike maximal

surface Σ = Im(φ) which contains C and is tangent to V along C. This is a global

existence result which does not require any decay of initial data (C, V ) at infinity,

and may be compared with the interesting recent results of [53] and [74].

Corollary 4.11. Let C : R → R1+2 be given as C(s) = (0, s, 0) (i.e. Im(C) is a
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straight line), let V be any smooth timelike velocity along C and let φ : R2 → R1+2

be the evolution of (C, V ) by isothermal gauge. Then K = ∅ (so φ is an immersion

and Σ = Im(φ) is a smooth properly immersed timelike maximal surface containing

Im(C) and tangent to V along C).

Proof. Since ϑ ≡ 0 and V is timelike, estimate (4.13) holds on the interval [s1, s2] = R,

so K = ∅ by Lemma 4.9.

Remark 4.12. If C : R → R1+2 is a smooth proper immersion such that Im(C) is

not a straight line, then it is easy to find a smooth vector field V along C for which

K 6= ∅ (i.e. the evolution φ of (C, V ) in isothermal gauge becomes singular in finite

time). Indeed, let C(s) = (0, c(s)) and U0(s) = c′(s)/|c′(s)|, and choose s1, s2 ∈ R

so that U0(s1) 6= U0(s2). Let β ∈ (0, 2π) be such that U0(s2) is given by an anti-

clockwise rotation of U0(s1) in the plane by β radians and define V (s) = (1, v(s)) by

v(s) = cos β
2U0(s)⊥ where ⊥ denotes anti-clockwise rotation in the plane by π

2 radians.

Writing a±(s) = v(s) ± sin β
2U0(s) for the spatial components of the null vectors

A±(s) = (1, a±(s)) which span the tangent plane TC(s)Im(φ) = span{C ′(s), V (s)}, we

may compute from the trigonometric identities (4.7) and (4.8) that a+(s2) = a−(s1),

so K 6= ∅.

From Lemma 4.9 we obtain the following short-time existence result, which does

not require any decay of the initial data at infinity.

Corollary 4.13 (Short-time existence). Let φ : R2 → R1+2 be an evolution by isother-

mal gauge for a Ck × Ck−1 initial data (C, V ) (k ≥ 1) and let U0 denote the unit

tangent vector along C as in (4.4). Suppose that U0 is uniformly continuous and V is

uniformly timelike (i.e. with V = (1, v) we have sups∈R |v(s)| < 1). Then there exists

T > 0 depending only on sups∈R 1
1−|v(s)| and the modulus of continuity of U0 such that

K ∩ {|t| ≤ T} = ∅ (so Im(φ) ∩ {(x0, x1, x2) : |x0| ≤ T} is a Ck immersed timelike

maximal surface containing Im(C) and tangent to V along C.)
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Proof. Take ε > 0 so that sups∈R |v(s)|2 ≤ 1 − ε. Since U0 is uniformly continuous

there exists δ > 0, depending only on ε and the modulus of continuity of U0, such

that |ϑ(r2)− ϑ(r1)|2 < ε provided |r1 − r2| ≤ δ. Defining sk = δk
2 for all k ∈ Z gives

sup
r1,r2∈[sk,sk+2]

|ϑ(r2)− ϑ(r1)|2 + sup
r∈[sk,sk+2]

|v(r)|2 < 1,

so K ∩D(sk, sk+2) = ∅ for all k ∈ Z by Lemma 4.9. With T := δ
4 , the set {|t| ≤ T}

is then contained in ∪k∈ZD(sk, sk+2), so K ∩ {|t| ≤ T} = ∅ as claimed.

4.3 Examples of C1 properly embedded surfaces

which are smooth timelike maximal surfaces

away from some null set

We will now give some (non-generic) examples of smooth initial data for which the

Cauchy evolution for a timelike maximal surface becomes singular in finite time, but

the evolution by isothermal gauge beyond singular time yields a C1 embedded surface.

Example 4.14 (C1 embedded surfaces which are smooth timelike maximal surfaces

away from a pair of null lines and contain non-graphical compact sets). Let l1 and l2

be the parallel half lines which take their endpoints at (−1
2 , 0) and (1

2 , 0) and which

are obtained as left and right translations respectively by a distance 1
2 of the upper

x2-axis. Let f be a smooth segment of embedded curve of length 2L > 0 which

smoothly joins l1 and l2 at their endpoints, such that the unit tangent along f has

non-vanishing x1 component everywhere except at the endpoints. See Figure 4.3(a)

for a C1 approximation of such a curve. Let c : R → R2 be a parameterisation of
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l1 ∪ l2 ∪ f by arclength

c(s) =



(
−1

2 ,−s− L
)

for s ∈ (−∞,−L]

(f 1(s), f 2(s)) for s ∈ (−L,L)(
1
2 , s− L

)
for s ∈ [L,∞).

Writing c′(s) = (cosϑ(s), sinϑ(s)), and we see Im(ϑ) = [−π
2 ,

π
2 ]. Moreover,

ϑ(s) ∈ (−π
2 ,

π
2 ) for s ∈ (−L,L). The evolution of C(s) = (0, c(s)) with initial

velocity V = (1, 0, 0) by isothermal gauge is φ(s, t) = (t, γ(s, t)), where γ(s, t) =
1
2 (c(s+ t) + c(s− t)). By Proposition 4.5, it follows that K (as defined in (4.2)) is

non-empty.

Let us compute Σsing. Since c′(s+ t) = −c′(s− t) if and only if s− t ≤ −L whilst

s+ t ≥ L or s− t ≥ L whilst s+ t ≤ −L, it follows K = K+ ∪ K− where

K+ = {(s, t) : t ≥ L, L− t ≤ s ≤ t− L} ,

K− = {(s, t) : t ≤ −L, t+ L ≤ s ≤ −t− L} .

We then see Σsing = Σ+
sing ∪ Σ−sing, where

Σ+
sing = {(t, 0, t− L) : t ≥ L} ,

Σ−sing = {(t, 0,−t− L) : t ≤ −L} .

i.e. Σsing consists of a pair of null half-lines, one emanating towards the future from

the point (L, 0, 0) and one emanating towards the past from the point (−L, 0, 0). We

have that Σ\Σsing is a smooth embedded timelike maximal surface. See Figure 4.3(b)

for a numerical approximation of such a surface.

Note that the unit tangent c′(s) is always confined to a closed semi-circle as
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(c′)1(s) ≥ 0. Writing U(s, t) = γs(s,t)
|γs(s,t)| = c′(s+t)+c′(s−t)

|c′(s+t)+c′(s−t)| for the spatial unit tangent,

defined only for (s, t) ∈ R2 \ K, it is seen that lim(s,t)→K U(s, t) = (1, 0). Thus

U(s, t) extends continuously to a unit tangent vector field along γ(s, t) and Σ is a C1

embedded causal surface. Applying Theorem 3.1, we see that the curvature of the

cross sections γ(·, t) blows up as t ↑ L so Σ is not a C2 surface in any neighbourhood

of φ(0, L). Since γ(s, t) = γ(s,−t), we see that Σ is invariant under a reflection

through the {x0 = 0} plane and so Σ is also not a C2 surface in any neighbourhood

of φ(0,−L). There exists a compact subset K ⊆ Σ which is not a graph. We observe

that the image of the spacelike unit normal in this example (defined only on Σ\Σsing)

intersects both connected boundary components of a closed hemi-hyperboloid.

(a) (b)

Figure 4.3: (a) A “cigar curve” which contains a compact subset which is not
a graph. (b) Evolution of (a) by isothermal gauge to a C1 embedded surface
Σ which is a timelike maximal surface away from null lines Σsing shown in
red. There is a compact subset K ⊆ Σ which is not a graph.
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Example 4.15 (C1 embedded doubly-periodic surfaces which are smooth away from

isolated null points situated on a rectangular lattice and which are graphs, but not

C1 graphs). Let f = (f 1, f 2) : [0, L]→ R2 parametrize a section of curve by arclength

so that f(0) = (−1, 0), f(L) = (1, 0), ḟ 1(s) > 0 for s ∈ (0, L), ḟ(0) = (0, 1),

ḟ(L) = (0,−1) and dkf2

dsk
(0) = dkf2

dsk
(L) = 0 for k ≥ 2. Extend f periodically to a

smooth immersion c : R→ R2 by

c(s) =



(f 1(s), f 2(s)) for s ∈ [0, L]

(2 + f 1(s),−f 2(s)) for s ∈ (L, 2L)

(4n, 0) + c(s− 2nL) for s ∈ [2nL, 2(n+ 1)L), n ∈ Z \ {0}.

See Figure 4.4(a). It may be seen that Im(c) defines a graph over the x1 axis, but

not a C1 graph. As c is parametrized by arclength, the evolution by isothermal gauge

φ(s, t) = (t, γ(s, t)) of the curve C(s) = (0, c(s)) with initial velocity V = (1, 0, 0) is

given by γ(s, t) = 1
2 (c(s+ t) + c(s− t)). Let us compute Σsing. Note that (s, t) ∈ K

iff s+t
L

is an odd integer and s−t
L

is an even integer or vise-versa. From this we deduce

that

K =
{(

mL

2 ,
nL

2

)
: m andn are odd integers

}

and since c(nL2 ) = (n− 1, 0) for all n ∈ Z, we have

Σsing =
{(

nL

2 , k, 0
)

: n is an odd integer and k is an even integer
}

which is a rectangular lattice of isolated points. Σ is a smooth, timelike embedded

surface away from Σsing and we observe that (c′)1(s) ≥ 0 so lim(s,t)→K U(s, t) = (1, 0)

and Σ is a C1 embedded causal surface. By Theorem 3.1 we see that Σ is not a C2
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surface in any neighbourhood of any point in Σsing. Σ is a graph over the x0–x1 plane,

but not a C1 graph. See Figure 4.4(b).

(a) (b)

Figure 4.4: (a) A periodic wedge of hemi-circles which is a graph, but not a
C1 graph. (b) Evolution of (a) to a C1 maximal surface which is a timelike
maximal surface away from null points Σsing on a rectangular lattice shown
in red. Σ is a graph over the x0–x1 plane, but not a C1 graph.

4.4 Discontinuity of the spatial unit tangent

In both of Examples 4.14 and 4.15 note that Im(U0) is exactly a closed semi-circle.

In this section we will show that the behaviour observed in Examples 4.14 and 4.15

is ‘borderline’. To be precise, we prove

Theorem 4.16. Let (C, V ) be a C1×C0 initial data where C : R→ R1+2 is a proper

immersion and let φ : R2 → R1+2, φ(s, t) = (t, γ(s, t)) be the evolution of (C, V ) by
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isothermal gauge. Writing U0 : R → S1 for the unit tangent vector along the initial

curve γ(·, 0), suppose that Im(U0) contains an arc of length > π. Then there exists

an open interval I ⊆ R such that for every t∗ ∈ I either Im(γ(·, t∗)) is not a C1

immersed curve, or Im(γ(·, t∗)) is a C1 immersed curve but the spatial unit tangent

U(·, t∗) = γs(·,t∗)/|γs(·,t∗)| (defined only on the set {s : γs(s, t∗) 6= 0}) admits no extension

to a continuous unit tangent vector field along γ(·, t∗).

Let (C, V ) be a C1 ×C0 initial data parameterised isothermally and let φ : R2 →

R1+2, φ(s, t) = (t, γ(s, t)) be the evolution of (C, V ) by isothermal gauge. As in §4.2

we write a±(s) = v(s) ± c′(s) so that |a±(s)|2 = 1. Recall from (4.7)–(4.8) that

a±(s) = (cosα±(s), sinα±(s)) where

α+(s) = ϑ(s) + arcsin (µ(s))

α−(s) = ϑ(s)− arcsin (µ(s))− π,

where ϑ and µ are defined by (4.5) and (4.6). Let us now introduce

β(s, t) = α+(s+ t)− α−(s− t) (4.14)

so that β(s, t) is the angle between the null directions a+(s+ t) and a−(s− t). Note

that we have

β(s, 0) = α+(s)− α−(s) = 2 arcsin(µ(s)) + π ∈ (0, 2π) (4.15)

for all s ∈ R.

The proof of Theorem 4.16 will be via a study of the spatial unit tangent map

U(s, t) = γs(s, t)
|γs(s, t)|

,
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which is well defined for (s, t) ∈ R2 \ K. From (4.1) one may compute explicitly

U(s, t) = sgn
(

sin β(s, t)
2

)
e(s, t) (4.16)

where

e(s, t) =
(
− sin α+(s+ t) + α−(s− t)

2 , cos α+(s+ t) + α−(s− t)
2

)
(4.17)

is a continuous unit vector field along γ(s, t) (note that s 7→ e(s, t) does not necessarily

define a unit tangent vector field along s 7→ γ(s, t)).

We have (s, t) ∈ K precisely when β(s, t) ∈ 2πZ. From formula (4.16) it is

apparent that to study when U becomes discontinuous requires an analysis of when

sin
(
β
2

)
changes sign.

Lemma 4.17. Let φ : R2 → R1+2 be an evolution by isothermal gauge for a C1 ×C0

initial data (C, V ). With U0 denoting the unit tangent along C as in (4.4) suppose

that Im(U0) contains an arc of length > π, i.e. suppose there exist s1, s2 ∈ R such

that

ϑ(s2)− ϑ(s1) > π (4.18)

where ϑ is as in (4.5). Then, with β as in (4.14), there exists (s∗, t∗) ∈ R2 such that

sin
(
β(s∗,t∗)

2

)
< 0. Furthermore, if C : R → {x0 = 0} ⊆ R1+2 is a proper immersion,

then there exists a time t∗ ∈ R such that sin
(
β(·,t∗)

2

)
takes both positive and negative

values.

Proof. By identities (4.7) and (4.8), we have

(
α+(s2)− α−(s1)

)
−
(
α+(s1)− α−(s2)

)
= 2

(
ϑ(s2)− ϑ(s1)

)
> 2π
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and so, setting s0 = 1
2(s1 + s2) and t0 = 1

2(s1 − s2) gives

β(s0,−t0)− β(s0, t0) =
(
α+(s0 − t0)− α−(s0 + t0)

)
−
(
α+(s0 + t0)− α−(s0 − t0)

)
> 2π.

It follows that one of β(s0,−t0) > 2π or β(s0, t0) < 0 holds, and since β is continuous

and β(·, 0) ∈ (0, 2π) by (4.15), it follows that sin
(
β(s∗,t∗)

2

)
< 0 for some (s∗, t∗) as

claimed.

Now suppose in addition that C is proper and suppose for a contradiction that

there exists no time t∗ ∈ R such that sin
(
β(·,t∗)

2

)
takes both positive and negative

values. Write

A = {t ∈ R : sin β(s, t)
2 ≥ 0 for all s ∈ R}

B = {t ∈ R : sin β(s, t)
2 ≤ 0 for all s ∈ R}.

Then A and B are closed sets, and we are supposing that A ∪ B = R. Note that

A is non-empty by (4.15), whilst B is non-empty by the argument of the previous

paragraph, and so by connectedness of R, A∩B must be non-empty. Taking t1 ∈ A∩B

gives β(·, t1) ≡ 2kπ for some k ∈ Z, which implies γs(·, t1) ≡ 0 so Im(γ(·, t1)) consists

of a single point. But since C is proper this contradicts Lemma 4.1. The lemma is

proved.

We will deduce Theorem 4.16 from Lemma 4.17 together with the following.

Lemma 4.18. Let φ : R2 → R1+2, φ(s, t) = (t, γ(s, t)) be an evolution by isothermal

gauge for a C1×C0 initial data (C, V ) and let β be as in (4.14). Suppose there exists

t∗ ∈ R such that sin
(
β(·,t∗)

2

)
takes both positive and negative values on an interval

[s1, s2]. Then for any ζ > 0, there is an open interval I ⊆ (t∗ − ζ, t∗ + ζ), such that
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for all t ∈ I either γ([s1, s2], t) is not a C1 immersed curve, or γ([s1, s2], t) is a C1

immersed curve but U(·, t) = γs(·,t)/|γs(·,t)| admits no continuous extension to a unit

tangent vector field along γ(·, t) on [s1, s2].

Proof. We will follow the proof of [42, Theorem 5.1(iii)]. We will assume that [s1, s2] is

such that β(s1, t∗) < 0 and β(s2, t∗) > 0, as all other cases may be treated analogously.

By continuity there exists δ0 ∈ (0, ζ] such that β(s1, t) < 0 and β(s2, t) > 0 for all

t ∈ (t∗− δ0, t∗+ δ0). Suppose for some t0 ∈ (t∗− δ0, t∗+ δ0) we have that γ([s1, s2], t0)

is a C1 immersed curve and U(·, t0) extends to a continuous unit tangent vector field

Û(·, t0) along γ(·, t0) on the interval [s1, s2] (we will see such a situation in Example

4.19). Define

r2 = sup{ŝ ∈ [s1, s2] : β(s, t0) ≤ 0 for all s ∈ [s1, ŝ]},

r1 = inf{ŝ ∈ [s1, r2] : β(s, t0) = 0 for all s ∈ [ŝ, r2]},
(4.19)

then

β(s, t0) = 0 for all s ∈ [r1, r2] (4.20)

and β takes both positive and negative values in every neighbourhood of [r1, r2].

Figure 4.5: The terms in the proof of Lemma 4.18.

We claim that

α+(r1 + t0) = α+(r2 + t0) +mπ for some odd integerm. (4.21)

To show (4.21), note that since γ(s, t0) = γ(r1, t0) for all s ∈ [r1, r2] it follows that
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Û(r1, t0) = Û(r2, t0). Take sequences {xn} and {yn} with xn → r1, β(xn, t0) < 0, and

yn → r2, β(yn, t0) > 0 (which is possible from the definitions of r1 and r2). Then

from (4.16)

Û(r1, t0) = lim
xn→r1

{
sgn

(
sin β(xn, t0)

2

)}
e(r1, t0)

Û(r2, t0) = lim
yn→r2

{
sgn

(
sin β(yn, t0)

2

)}
e(r2, t0)

= − lim
xn→r1

{
sgn

(
sin β(xn, t0)

2

)}
e(r2, t0),

so e(r1, t∗) = −e(r2, t∗) from which (4.21) follows from (4.17) and (4.20).

Geometrically, (4.20) and (4.21) amount to the statement that the null directions

a+(s + t0) and a−(s − t0) are aligned for s ∈ [r1, r2] and undergo a rotation by a

non-trivial multiple of π radians as s varies from r1 to r2. We will now show that

this situation will be lost after a small perturbation of t0. More precisely, we will

show that for any ε > 0 there is an open interval I either of the form I = (t0, t0 + δ)

or I = (t0 − δ, t0) for some δ > 0 such that for each t ∈ I, there exists an interval

J = J(t) ⊆ [s1, s2] such that β(·, t) takes both positive and negative values on J and

|α+(w1 + t) − α+(w2 + t)| < ε for all w1, w2 ∈ J . Taking ε smaller than π, this will

imply that condition (4.21) with t0 replaced by t cannot hold for any r1, r2 ∈ J , so

we will conclude that for each t ∈ I, the unit tangent U(·, t) admits no continuous

extension to a unit tangent map, thus completing the proof of the lemma.

Fix ε > 0. By (4.19) and continuity of α+ there exists r3 ∈ [s1, r1) such that

β(r3, t0) < 0 and

|α+(s+ t0)− α+(r1 + t0)| < ε

4 for s ∈ [r3, r1]. (4.22)
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Take δ > 0 so that

β(r3, t) < 0 for t ∈ [t0 − δ, t0 + δ]. (4.23)

By the uniform continuity of α+ on compact sets, by refining δ > 0 to a smaller

number as necessary, we may ensure

|α+(s+ t)− α+(s+ t0)| < ε

4 for s ∈ [s1, s2], t ∈ [t0 − δ, t0 + δ]. (4.24)

By (4.21), we can define

r4 = inf
{
s ∈ [r1, r2] : |α+(s+ t0)− α+(r1 + t0)| = ε

4

}
. (4.25)

We will first treat the case where α+(r4 + t0) = α+(r1 + t0) + ε
4 . By refining δ > 0

to be smaller as necessary, we may assume that α+(w2 + t0) > α+(w1 + t0) provided

w1 ∈ [r1, r1 + δ] and w2 ∈ [r4 − δ, r4]. Then for each τ ∈ (0, δ], we have

∫ r4−τ

r1
(α+(s+ τ + t0)− α+(s+ t0))ds =

∫ r4

r4−τ
α+(s+ t0)ds−

∫ r1+τ

r1
α+(s+ t0)ds

> 0

which shows that there exists an s(τ) ∈ [r1, r4 − τ ] such that α+(s(τ) + τ + t0) >

α+(s(τ) + t0). We then see

β
(
s(τ) + τ

2 , t0 + τ

2

)
= α+(s(τ) + τ + t0)− α+(s(τ)− t0)

> α+(s(τ) + t0)− α+(s(τ)− t0) = β(s(τ), t0)
(4.20)= 0.

(4.26)

Then for all τ ∈ (0, δ], by (4.23) and (4.26) β(·, t0+ τ
2 ) takes both positive and negative
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values on J = J(t0 + τ
2 ) := [r3, s(τ) + τ

2 ]. On the other hand, for all ω1, ω2 ∈ J we

have

|α+(ω1 + t0 + τ

2)− α+(ω2 + t0 + τ

2)| ≤ |α+(ω1 + t0 + τ

2)− α+(ω1 + t0)|

+|α+(ω2 + t0 + τ

2)− α+(ω2+t0)|+ |α+(ω1 + t0)− α+(r1 + t0)|

+ |α+(ω2 + t0)− α+(r1 + t0)|

and since the first two terms on the right hand side of the above inequality are

bounded by (4.24) and each of the last two terms is bounded by (4.22) and (4.25),

this gives |α+(ω1 + t0 + τ
2 )− α+(ω2 + t0 + τ

2 )| < ε which is what we set out to show.

Next we treat the case where α+(r4 + t0) = α+(r1 + t0)− ε
4 by a similar argument.

Choose δ > 0 so that α+(w1 + t0) > α+(w2 + t0) provided w1 ∈ [r1, r1 + δ] and

w2 ∈ [r4 − δ, r4]. Then, for all τ ∈ (0, δ] there exists s(τ) ∈ [r1 + τ, r4] such that

α+(s(τ)− τ + t0) > α+(s(τ) + t0). In this case,

β
(
s(τ)− τ

2 , t0 −
τ

2

)
= α+(s(τ)− τ + t0)− α−(s(τ)− t0)

> α+(s(τ) + t0)− α−(s(τ)− t0) = β(s(τ), t0)
(4.20)= 0.

(4.27)

Then for all τ ∈ (0, δ], by (4.23) and (4.27), β(·, t0 − τ
2 ) takes both positive and

negative values on J = [r3, s(τ) − τ
2 ], whilst for all w1, w2 ∈ J , arguing as above by

(4.22), (4.24) and (4.25) we have |α+(w1 + t0 − τ
2 ) − α+(w2 + t0 − τ

2 )| < ε which is

what we set out to show. This completes the proof.

We have now gathered all of the ingredients for the proof of Theorem 4.16

Proof of Theorem 4.16: Letting φ(s, t) = (t, γ(s, t)) be an evolution by isothermal

gauge for a C1 × C0 initial data (C, V ), we are supposing that the image of the unit
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tangent along C contains an arc of length > π, i.e. there exist s1, s2 ∈ R for which

(4.18) holds. By Lemma 4.17 there then exists a time t∗ ∈ R such that sin β(·,t∗)
2 takes

both positive and negative values. By Lemma 4.18 there then exists an open interval

I such that for each t ∈ I either Im(γ(·, t)) is not a C1 immersed curve or Im(γ(·, t))

is a C1 immersed curve but U(·, t) does not admit an extension to a continuous unit

tangent vector field along γ(·, t). Theorem 4.16 is proved.

The interval I in Lemma 4.18 may be chosen to be contained in any neighbourhood

of the time t∗, but it is not always possible to choose an interval I containing t∗.

Indeed, it is possible that sin
(
β(·,t∗)

2

)
takes both positive and negative values on

an interval [s1, s2] whilst γ([s1, s2], t∗) is a C1 immersed curve and U(·, t∗) admits

a continuous extension to a unit tangent vector field along γ(·, t∗), as the following

example illustrates.

Example 4.19 (‘Cusp reversal’). Consider the C1 initial curve defined by

c(s) =



(s,−1) for s ∈ (−∞, 0]

(sin s,− cos s) for s ∈ (0, 2π](
1
2 sin 2s, −1

2 (1 + cos 2s)
)

for s ∈ (2π, 9π
4 ](

1
2 ,−

1
2 + s− 9π

4

)
for s ∈ (9π

4 ,∞).

See Figure 4.6(a). Let φ(s, t) = (t, γ(s, t)) be the evolution by isothermal gauge

of the curve C = (0, c) with initial velocity V = (1, 0, 0). We have β(s, π2 ) < 0

for s ∈ [π2 − ε, π2 ) and β(s, π2 ) > 0 for s ∈ (3π
2 ,

3π
2 + ε] for some ε > 0, whilst

β(s, π2 ) = 0 for s ∈ [π2 ,
3π
2 ]. Moreover, lims→π

2
− U(s, π2 ) = lim

s→ 3π
2

+ U(s, π2 ) = (0, 1).

Thus γ([π2 − ε,
3π
2 + ε], π2 ) is a C1 immersed curve. See Figure 4.6(b). The numerical

plot reveals some interesting geometry at the time t∗ = π
2 . We see that at this moment

in time a cusp instantaneously reverses the direction of its axis, so that the spatial
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cross section is C1 at φ(π2 ,
π
2 ). Although the spatial cross-section is regular at this

point, the surface is not, and looks locally like a cone, with a pair of cusps tracing

two ‘cuts’ running down to the vertex.

(a) (b)

Figure 4.6: (a) The initial curve of Example 4.19. (b) The evolution φ(s, t)
of the curve in (a) by isothermal gauge, plotted for values of s ∈ [−2, 10] and
t ∈ [π2 − ε,

π
2 + ε]. The coloured curves are {x0 = constant} cross sections.

We conclude this section with an example where the set γ([s1, s2], t∗) is a C1 im-

mersed curve, whilst U(·, t∗) admits no extension to a continuous unit tangent vector

field along γ(·, t∗) on [s1, s2] (thus γ(·, t∗) admits no monotone reparameterisation to

a C1 immersion).

Example 4.20 (Degenerate cusp singularities (‘sheeting’)). Consider the C1 initial
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curve defined by

c(s) =



(−s,−1) for s ∈ (−∞, 0]

(− sin s,− cos s) for s ∈ (0, π2 ](
−2 + cos(s− π

2 ),− sin(s− π
2 )
)

for s ∈ (π2 , π]

(−2− sin(s− π), 2− cos(s− π)) for s ∈ (π, 2π](
−2 + 2 sin s−2π

2 , 1 + 2 cos s−2π
2

)
for s ∈ (2π, 3π]

(1− cos(s− 3π), 1− sin(s− 3π)) for s ∈ (3π, 7π
2 ](

1 + sin(s− 7π
2 ),−1 + cos(s− 7π

2 )
)

for s ∈ (7π
2 , 4π]

(2,−1− (s− 4π)) for s ∈ (4π,∞).

See Figure 4.7(a). Let φ(s, t) = (t, γ(s, t)) be the evolution of C(s) = (0, c(s)) with

initial velocity V = (1, 0, 0). It may be seen that the curve γ(s, 3π
2 ) = c(s + 3π

2 ) +

c(s− 3π
2 ) will backtrack and retrace its steps twice, so that the map s 7→ U(s, 3π

2 ) =
γs(s, 3π2 )/|γs(s, 3π2 )| is discontinuous, whilst the image γ([3π

2 ,
5π
2 ], 3π

2 ) is a C1 curve. This

phenomenon is illustrated in Figure 4.7(b). In this example, the degenerate behaviour

is sandwiched between a pair of ordinary cusps which travel along t = −s+ 2π, t > π

and t = s− 3π
2 , t >

5π
4 , and the surface Σ is not C1.

4.5 An example of singularity which is not by col-

lapse for which the limit curve at first singu-

larity is not C1

Theorem 4.16 shows that if (C, V ) is an initial data such that the image of the unit

tangent map along C contains an arc of length > π then the spatial unit tangent map

86



(a) (b)

Figure 4.7: (a) The initial curve of Example 4.20. (b) The evolution φ(s, t)
of the curve in (a) by isothermal gauge, plotted for values s ∈ [1.4π, 2.6π], t ∈
[1.4π, 1.6π]. The coloured curves are {x0 = constant} cross sections

of an evolution by isothermal gauge of (C, V ) becomes discontinuous somewhere (i.e.

Theorem 4.16). In general, the discontinuity of the spatial unit tangent will occur

after the first formation of singularity. Indeed, recall from §1.3.1 that for suitably

generic initial data, at the first time of singularity the limit curve will be C1. A

(non-generic) example where the first time of singularity is not a C1 curve is given

by the shrinking circle solution of Example 3.3. In this case the evolution is future

inextendible even as a C0 submanifold beyond the singular time. In the context of

spatially non-compact timelike maximal surfaces, however, collapsing singularities are

impossible by Lemma 4.1. In this section we will give an example of a smooth proper

immersion C : R → R1+2 and a smooth velocity V along C such that, for the future

Cauchy evolution of (C, V ) at the first time of singularity, the limit curve is not C1.

Example 4.21 (Example of a (non-compact) smooth initial data for which singularity

formation is not by collapse but the limit curve at the first singularity is not C1).

Let q : [0, L] → R2 be a smooth embedding such that |q̇(s)|2 = 1 for all s ∈ [0, L]

(so that the length of q is L), such that q(0) = (0,−1), q(L) = (1, 0), q̇(0) = (1, 0),
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q̇(L) = (0, 1) and dkq
dsk

(0) = dkq
dsk

(L) = 0 for all k ≥ 2, and such that q̈2(s) > 0 for all

s ∈ (0, L). Let R = ( 0 −1
1 0 ) denote anti-clockwise rotation of the plane by π

2 radians

and define a smooth immersion C : R→ R1+2 by C(s) = (0, c(s)) where

c(s) =



(s,−1) for s ∈ (−∞, 0)

q(s) for s ∈ [0, L)

Rq(s− L) for s ∈ [L, 2L)

R2q(s− 2L) for s ∈ [2L, 3L)

(−1,−(s− 3L)) for s ∈ [3L,∞).

See Figure 4.8(i) for a C1 approximation of such a curve. Note that we have c′(s) =

(cosϑ(s), sinϑ(s)) where ϑ(s) = 0 for s ∈ (−∞, 0], ϑ(s) = 3π
2 for s ∈ [3L,∞) and ϑ(s)

is strictly increasing for s ∈ (0, 3L), and where ϑ(s+L) = ϑ(s)+ π
2 for s ∈ [0, 2L]. Let

V (s) = (1, 0, 0) be the initial velocity along C and let φ : R2 → R1+2 be the evolution

of (C, V ) by isothermal gauge. Then φ is a smooth map of the form φ(s, t) = (t, γ(s, t))

where γ(s, t) = 1
2 (c(s+ t) + c(s− t)). We claim that φ is an immersion for |t| < L

and Im(γ(·, L)) is not a C1 immersed curve (so the first time of singularity is t = L and

the limit curve is not C1). Indeed, by construction we have that |ϑ(s+t)−ϑ(s−t)| < π

for all s ∈ R provided |t| < L and |ϑ(s+L)−ϑ(s−L)| = π iff s ∈ [L, 2L]. So φ is an

immersion for |t| < L and γ(·, L) is an immersion at s iff s /∈ [L, 2L]. This shows that

Im(γ(·, L)) = γ((−∞, L], L) ∪ γ([2L,∞), L) and moreover we may compute that

lim
s↑L

γs(s, L)
|γs(s, L)| = (0, 1); lim

s↓2L

γs(s, L)
|γs(s, L)| = (−1, 0).

Thus Im(γ(·, L)) is not a C1 immersed curve (in fact it contains a right-angled corner)

as claimed. See Figure 4.8.
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(i) (ii)

(iii) (iv)

(v) (vi)
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(vii)

Figure 4.8: The Cauchy evolution of Example 3.3 in which the limit curve
at the first time of singularity is not C1. The {x0 = t} cross sections of
the timelike maximal surface are plotted in blue for (i) t = 0, (ii) t = .1π,
(iii) t = .2π, (iv) t = .3π, (v) t = .4π and (vi) t = .5π. In (vii) we resolve
the motion in a neighbourhood of the singularity by plotting in orange the
{x0 = t} cross sections as t varies in 6 evenly spaced intervals from t = .415π
to t = .49π.
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Chapter 5

An initial-boundary value problem

Figure 5.1: Waves reflected off a boundary at Christ
Church Meadow, May 2019.
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5.0 A piece of notation

For the rest of this thesis we will adopt the shorthand

⟪V,W⟫ = −V 0W 0 + v1w1 + v2w2 = −V 0W 0 + 〈v, w〉

‖V ‖2 = ⟪V, V ⟫ = −(V 0)2 + |v|2

for the Minkowskian inner product between two vectors V = (V 0, v) ∈ R1+2 and

W = (W 0, w) ∈ R1+2.

5.1 Statement of the IBVP for a timelike maxi-

mal surface with a single prescribed timelike

boundary curve

Let Γ: [0,∞) → R1+2 be a C2 proper future-directed timelike immersion, let

C : [0,∞) → R1+2 be a C2 proper immersion of the form C(s) = (0, c(s)) and such

that

C(0) = Γ(0) (5.1)

and let V be a C1 future-directed timelike vector field along C such that

Γ̇(0) ∈ span{C ′(0), V (0)}. (5.2)

We refer to such (C, V,Γ) as an initial-boundary data. Given such an initial-boundary

data (C, V,Γ), the initial-boundary value problem (IBVP) is to find a C2 proper

timelike maximal immersion φ : [0,∞) × [0,∞) → R1+2 such that t 7→ φ(0, t) is a
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monotone reparameterisation of Γ and s 7→ φ(s, 0) is a monotone reparameterisation

of C with Im(φ) contained in the future of Im(C) and with V tangent to Im(φ) along

C.

In order to find a C2 solution to the IBVP, there is a natural C2 compatibility

condition that the data (C, V,Γ) should satisfy. Let us quickly derive this condition,

which effectively states that the mean curvature should vanish ‘at the corner’. Suppose

that φ : [0,∞) × [0,∞) → R1+2 is a C2 solution to the IBVP. Reparameterising as

necessary, we may assume that φ : [0, a) × [0, b) → R1+2 is such that l 7→ φ(l, 0) is a

reparametrisation of C by arclength whilst τ 7→ φ(0, τ) is a reparametrisation of Γ

by arclength. Denote by l 7→ N(l) a unit vector field along C which is normal to the

plane span{dC
dl

(l), V (l)} (so that N is a unit normal to the surface Σ = Im(φ) along

C). The mean curvature scalar is then computed at the point (0, 0) as

h(0, 0) = 1
−1− ⟪φl(0, 0), φτ (0, 0)⟫2

− ⟪φll(0, 0), N(0)⟫

+ 2 ⟪φl(0, 0), φτ (0, 0)⟫⟪φτ (0, 0), dN
dl

(0)⟫+ ⟪φττ (0, 0), N(0)⟫
 = 0

and we arrive at the condition

−⟪d
2C

dl2
(0), N(0)⟫+ 2⟪dC

dl
(0), dΓ

dτ
(0)⟫⟪dΓ

dτ
(0), dN

dl
(0)⟫+ ⟪d

2Γ
dτ 2 (0), N(0)⟫ = 0

(5.3)

for the data (C, V,Γ) where l is the arclength parameter along C and τ is the arclength

parameter along Γ. Condition (5.3) is the statement that the mean curvature vanishes

at the corner. In the next section, we will arrive at an additional (less natural) C2

compatibility condition.
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5.2 A choice of conformal structure

In the last section we introduced an IBVP for a single timelike boundary curve. We

would now like to study this IBVP by conformal methods. One of the interesting

aspects of Lorentzian geometry is the rich variety of possible conformal structures.

Whilst any Riemannian surface diffeomorphic to R2 is smoothly conformally equiva-

lent to either the plane or the unit disc, there exist infinitely many smooth Lorentzian

surfaces diffeomorphic to R2 no two of which are C0 conformally equivalent. Moreover,

Ck conformal equivalence between Lorentz surfaces does not imply Ck+1 conformal

equivalence. In fact, for every k ∈ N∪{0} there exist infinitely many smooth and Ck

conformally equivalent Lorentzian surfaces diffeomorphic to R2, no two of which are

Ck+1 conformally equivalent [70, p.45 Theorem 2’]. Given such a complex state of

affairs, we will restrict our attention in this thesis and seek C2 solutions to the IBVP

with a simple C2 conformal structure. It will transpire, however, that one aspect of

this conformal structure is justified a postiori.

Let (s, t) be coordinates on R1+1 so that the Minkowski metric is ds2 − dt2. For

µ ∈ (−1, 1) and T∗ ∈ (0,∞] we define the conformal domain

ΩT∗
µ =

{
(s, t) : 0 ≤ t, µt ≤ s,

t− s
1− µ < T∗

}
⊆ R1+1, (5.4)

see Figure 5.2. By a rescaling of R1+1 it is clear that for any T1, T2 ∈ (0,∞) the

domains ΩT1
µ and ΩT2

µ are smoothly conformally equivalent. On the other hand, it

may be shown that for µ1 6= µ2 the domains ΩT∗
µ1 and ΩT∗

µ2 are C1 conformally distinct,

whilst the domains Ω∞µ and Ω1
µ are C0 conformally distinct, see [46]. One may think

of Ω∞µ and Ω1
µ as describing the two simplest possible structures of null infinity.

We will seek C2 solutions to the IBVP with the C2 conformal structure ΩT∗
µ for

some µ ∈ (−1, 1), T∗ ∈ (0,∞]. It turns out that this choice of C2 conformal structure
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Figure 5.2: Conformal domain for solution to the initial-boundary value prob-
lem: the cases T∗ =∞ and T∗ <∞.

imposes C2 compatibility conditions on the initial data (C, V,Γ) in addition to (5.3)

(specifically, it imposes local constraints ‘at the corner’) which we will now proceed

to derive. Suppose that

φ : ΩT∗
µ → R1+2

is a C2 proper timelike immersion with vanishing mean curvature which is conformal

with respect to the metric ds2 − dt2 on ΩT∗
µ such that t 7→ φ(µt, t) is future-directed

timelike and Im(φ(·, 0)) ⊆ {x0 = 0}. So φ satisfies

‖φt ± φs‖2 = 0 (5.5)

φtt − φss = 0. (5.6)

We may assume φ(0, 0) = (0, 0, 0) without loss of generality. Writing φ(s, 0) = C(s) =

(0, c(s)) and φt(s, 0) = V (s) and writing

φ(0, t) = Γ(z(t))
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where Γ: [0,∞)→ R1+2 is taken to be parameterised as

Γ(x0) = (x0, σ(x0))

and where

z : [0, T∗)→ [0,∞)

is some C2 strictly increasing and surjective function, one may compute d’Alembert’s

formula

φ(s, t) =



1
2

(
C(s+ t) + C(s− t) +

∫ s+t
s−t V (ζ)dζ

)
for s ≥ t

1
2

(
C(s+ t)− C

(
1+µ
1−µ(t− s)

)
+
∫ t+s

1+µ
1−µ (t−s) V (ζ)dζ

)
+Γ

(
z
(
t−s
1−µ

))
for t > s.

(5.7)

Since ⟪φs(µt, t), φt(µt, t)⟫ = 0 for all t ∈ [0, T∗) it may be computed from (5.7) that

z : [0, T∗)→ [0,∞) satisfies

ż(t) = (1 + µ)
⟪ dΓ
dx0 (z(t)), A+ ((1 + µ)t)⟫

‖ dΓ
dx0 (z(t))‖2 ,

z(0) = 0
(5.8)

where A+(s) = V (s) + C ′(s) as usual.

Since φ is C1 we have limt↓0
d
dt
φ(µt, t) = lims↓0 (φt(s, 0) + µφs(s, 0)) which implies

dΓ
dx0 (0)ż(0) = V (0) + µC ′(0). (5.9)

Note that the equation (5.9) expresses the parameter µ ∈ (−1, 1) in terms of (C, V,Γ).
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By rescaling φ(s, t) 7→ φ(λs, λt) and redefining T∗ if necessary we may take that

dΓ
dx0 (0) = V (0) + µC ′(0), (5.10)

or in other words, λ is chosen so that the solution z : [0, T∗)→ [0,∞) of (5.8) satisfies

ż(0) = 0. (5.11)

Since φ is C2 and satisfies (5.6) we have

lim
t↓0

d2

dt2
φ(µt, t) = lim

s↓0

(
(1 + µ2)φss(s, 0) + 2µφst(s, 0)

)

which implies by (5.7) and (5.11) that

d2Γ
(dx0)2 (0) + dΓ

dx0 (0)z̈(0) = (1 + µ2)C ′′(0) + 2µV ′(0). (5.12)

The x0 component of (5.12) reads

z̈(0) = 0 (5.13)

and so the x1–x2 components of (5.12) read

d2σ

(dx0)2 (0) = (1 + µ2)c′′(0) + 2µv′(0). (5.14)

We will now show that (5.14) implies (5.13). Indeed, supposing that (5.14) holds,
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we compute

z̈(0) = (1 + µ)
(1 + µ)

⟪ dΓ
dx0 (0), A′+(0)⟫
‖ dΓ
dx0 (0)‖2 +

⟪ d2Γ
(dx0)2 (0), A+(0)⟫
‖ dΓ
dx0 (0)‖2 ż(0)

− 2
⟪ dΓ
dx0 (0), A+(0)⟫
‖ dΓ
dx0 (0)‖4 ⟪ dΓ

dx0 (0), d2Γ
(dx0)2 (0)⟫ż(0)


= 1

(1− µ)(−1 + |v(0)|2)

(1 + µ) 〈c′′(0) + v′(0), µc′(0) + v(0)〉

+
〈
c′(0) + v(0), d2σ

(dx0)2 (0)
〉
− 2

1 + µ

〈
µc′(0) + v(0), d2σ

(dx0)2 (0)
〉

= 1
−1 + |v(0)|2

1 + µ

1− µ 〈c
′′(0) + v′(0), µc′(0) + v(0)〉

+ 1
1 + µ

〈
c′(0)− v(0), d2σ

(dx0)2 (0)
〉

= 1
−1 + |v(0)|2

1 + µ

1− µ 〈c
′′(0) + v′(0), µc′(0) + v(0)〉

+ 1
1 + µ

〈
c′(0)− v(0), (1 + µ2)c′′(0) + 2µv′(0)

〉
= 1
−1 + |v(0)|2

1 + 3µ2

1− µ2

(
〈c′′(0), c′(0)〉+ 〈v′(0), v(0)〉

+ 〈c′′(0), v(0)〉+ 〈c′(0), v′(0)〉
)

= 0

where we appealed to the formula (5.10) together with the identities 〈c′(s), v(s)〉 = 0

and |c′(s)|2 + |v(s)|2 = 1. Thus we have shown that (5.12) is equivalent to (5.14).

For the purpose of clarity, let us express the right hand side of (5.14) in terms of

arclength parameter l along C. Let

l(s) =
∫ s

0

√
|c′(s̃)|2ds̃ =

∫ s

0

√
1− |v(s̃)|2ds̃
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denote the arclength parameter along C. Then we have

v′(0) =
√

1− |v(0)|2dv
dl

(0)

c′′(0) = (1− |v(0)|2)d
2c

dl2
(0)−

〈
v(0), dv

dl
(0)
〉
dc

dl
(0)

so (5.14) reads

d2σ

(dx0)2 (0) = (1 + µ2)
(

(1− |v(0)|2)d
2c

dl2
(0)−

〈
v(0), dv

dl
(0)
〉
dc

dl
(0)
)

+ 2µ
√

1− |v(0)|2dv
dl

(0).
(5.15)

We now pose the following IBVP.

IBVP 5.1. Given an initial-boundary data (C, V,Γ) which satisfies the C2 compati-

bility condition (5.15), find a C2 proper timelike maximal immersion φ : ΩT∗
µ → R1+2

for some µ ∈ (−1, 1) and T∗ ∈ (0,∞] where ΩT∗
µ is as in (5.4), which is a conformal

map with respect to the Minkowski metric ds2 − dt2 on ΩT∗
µ , such that s 7→ φ(s, 0) is

a monotone reparameterisation of C, t 7→ φ(µt, t) is a monotone reparameterisation

of Γ, Im(φ) is contained in the future of Im(C) and V is tangent to Im(φ) along C.

Remark 5.2 (The simplest case of (5.15)). The C2 compatibility condition (5.15) is

not particularly intuitive, so let us point out a simple (and trivial) case for which (5.15)

holds. Suppose that the boundary curve Γ has zero curvature at 0 (so d2Γ
dτ2 (0) = 0 where

τ is the arclength of Γ), the initial curve C has zero curvature at 0 (so d2C
dl2

(0) = 0

where l is the arclength of C), and the normal vector N(l) to the timelike plane

span{dC
dl

(l), V (l)} is parallel along C at 0 (so dN
dl

(0) = 0). Then it may be seen to

follow that d2σ
(dx0)2 (0) = d2c

dl2
(0) = dv

dl
(0) = 0 so (5.15) holds trivially in this case.
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5.3 Evolution by isothermal gauge

Let (C, V,Γ) be an initial-boundary data which satisfies the C2 compatibility condi-

tion (5.15). We now look to solve IBVP 5.1 by constructing the desired conformal

timelike maximal immersion, and we will start by parameterising the data accord-

ingly. We may take V to be of the form V (s) = (1, v(s)) where

〈c′(s), v(s)〉 = 0 (5.16)

and we may then uniquely monotonically reparametrise C : [0,∞) → R1+2, C(s) =

(0, c(s)) so that

|c′(s)|2 + |v(s)|2 = 1. (5.17)

Note that ‖V (s)± C ′(s)‖2 = 0 so the vectors

A±(s) = V (s)± C ′(s) = (1, v(s)± c′(s)) = (1, a±(s))

are null vectors which span the tangent plane to the prospective timelike maxi-

mal surface at C(s). It is clear that we still have a proper immersion of the form

C : [0,∞) → R1+2 after reparametrisation. We may take Γ(0) = C(0) = (0, 0, 0)

without loss of generality and, as Γ is proper and timelike, we may take it to be

parameterised as

Γ(x0) = (x0, σ(x0)). (5.18)
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By (5.2) there is a µ ∈ (−1, 1) such that

dΓ
dx0 (0) = V (0) + µC ′(0). (5.19)

Recalling (5.8) from §5.2, we now turn to analyse the following ordinary differential

equation

ż(t) = (1 + µ)
⟪ dΓ
dx0 (z(t)), A+ ((1 + µ)t)⟫

‖ dΓ
dx0 (z(t))‖2 ,

z(0) = 0.
(5.20)

Since Γ is C2 and timelike and A+ is C1, the right hand side of (5.20) is a C1

function of z and t. So by the Picard theorem (see e.g. [20, Chap. 1]) there is a

unique C2 solution z : [0, T ) → [0,∞) to (5.20) for some T > 0. Let [0, T∗) denote

the maximal interval of existence for (5.20) and z : [0, T∗)→ [0,∞) denote the unique

inextendible solution to (5.20). We claim that z is strictly increasing and surjective

(i.e. a diffeomorphism). Indeed, since | dσ
dx0 | < 1 we have

ż(t) = (1 + µ)
⟪ dΓ
dx0 (z), A+((1 + µ)t)⟫

‖ dΓ
dx0 (z)‖2

= (1 + µ)
1− 〈 dσ

dx0 (z), a+((1 + µ)t)〉
1− | dσ

dx0 (z)|2

≥ (1 + µ)
1− | dσ

dx0 (z)|
1− | dσ

dx0 (z)|2
= (1 + µ)

1 + | dσ
dx0 (z)|

≥ 1 + µ

2

(5.21)

so z is strictly increasing. If T∗ < ∞ we know from the Picard theorem that

limt↑T∗ z(t) = ∞ whilst if T∗ = ∞ then (5.21) implies that limt↑∞ z(t) = ∞. In

either case we have shown z : [0, T∗) → [0,∞) is strictly increasing and surjective as

claimed.

Remark 5.3. Suppose that Γ: [0,∞) → R1+2, Γ(x0) = (x0, σ(x0)) is a uniformly
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timelike curve, so that there exists a b ∈ [0, 1) such that | dσ
dx0 (x0)| ≤ b for all x0 ∈

[0,∞). Then it follows from (5.20) that

ż(t) = (1 + µ)
⟪ dΓ
dx0 (z), A+((1 + µ)t)⟫

‖ dΓ
dx0 (z)‖2

= (1 + µ)
1− 〈 dσ

dx0 (z(t)), a+((1 + µ)t)〉
1− | dσ

dx0 (z(t))|2
≤ (1 + µ)

1 + | dσ
dx0 (z(t))|

1− | dσ
dx0 (z(t))|2

= (1 + µ)
1− | dσ

dx0 (z(t))|
≤ 1 + µ

1− b ,

which is a uniform upper bound. Thus if Γ is uniformly timelike then T∗ =∞.

Next, we recall from (5.4) the conformal domain

ΩT∗
µ =

{
(s, t) : 0 ≤ t, µt ≤ s,

t− s
1− µ < T∗

}
⊆ R1+1

(see Figure 5.2) and we define

φ : ΩT∗
µ → R1+2

to be the unique solution to the initial-boundary value problem

φtt − φss = 0 (5.22)

φ(s, 0) = C(s) (5.23)

φt(s, 0) = V (s) (5.24)

φ(µt, t) = Γ(z(t)), (5.25)

which is given explicitly by the d’Alembert formula (5.7). As in the boundary-less

case, we adopt the following definition.

Definition 5.4. Let (C, V,Γ) be a C2 × C1 × C2 initial boundary data satisfying
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the C2 compatibility condition (5.15) and take the data (C, V,Γ) to be monotone

reparametrised according to (5.16)–(5.18). Let µ ∈ (−1, 1) denote the constant in

(5.19), let z : [0, T∗)→ [0,∞) denote the inextendible solution to (5.20), let ΩT∗
µ be the

conformal domain (5.4) and let φ : ΩT∗
µ → R1+2 satisfy the initial-boundary problem

(5.22)–(5.25). Then we call φ the evolution of (C, V,Γ) by isothermal gauge.

The following result shows that if the evolution by isothermal gauge is an immer-

sion, then it gives a (global) solution to IBVP 5.1.

Proposition 5.5. Let (C, V,Γ) be a C2×C1×C2 initial-boundary data satisfying the

C2 compatibility condition (5.15) and let φ : ΩT∗
µ → R1+2 be the evolution of (C, V,Γ)

by isothermal gauge as in Definition 5.4. Then φ satisfies the following properties:

1. φ is C2.

2. φ is proper.

3. φ satisfies φ0
t ≥ 1

2 as well as the isothermal conditions ‖φt ± φs‖2 = 0 on ΩT∗
µ

and φ is a timelike maximal immersion on ΩT∗
µ \ K where

K =
{

(s, t) ∈ ΩT∗
µ : rank(dφ) 6= 2

}
=
{

(s, t) ∈ ΩT∗
µ : ‖φs(s, t)‖2 = 0

}
. (5.26)

Proof. We start by showing that φ is C2. Note that from the d’Alembert formula

(5.7) it follows immediately that φ is C2 for s > t and for s < t so to show that φ

is Ck (k=0,1,2) it suffices to show that φ is Ck along the line s = t. Moreover, it

may be checked from (5.7) that φ will be Ck along the line s = t provided it is Ck

at the point (s, t) = (0, 0). So φ is C0 provided Γ(0) = C(0) which is precisely the

first compatibility condition (5.1). Now let us show that φ is C1. From (5.7) one may

check that φ is C1 provided limt↓0
d
dt

(
φ(µt, t)

)
= lims↓0 (µφs(s, 0) + φt(s, 0)) which is
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equivalent to

dΓ
dx0 (0)ż(0) = µC ′(0) + V (0). (5.27)

Recalling that we chose µ (by invoking the second compatibility condition (5.2)) to

satisfy (5.19), we compute

ż(0) = (1 + µ)⟪µC
′(0) + V (0), C ′(0) + V (0)⟫
‖µC ′(0) + V (0)‖2 = (1 + µ) 1− µ

1− µ2 = 1 (5.28)

and (5.27) follows from (5.19), so φ is C1. Now let us show that φ is C2. From (5.7)

one may check that φ is C2 provided

lim
t↓0

d2

dt2
φ(µt, t) = lim

s↓0

(
(1 + µ2)φss(s, 0) + 2µφst(s, 0)

)

which is equivalent by (5.28) to

dΓ
dx0 (0)z̈(0) + d2Γ

(dx0)2 (0) = (1 + µ2)C ′′(0) + 2µV ′(0) (5.29)

and by the computations from (5.13) to (5.15) we recall that (5.29) is equivalent to

the third compatibility condition (5.15). So φ is C2.

We will now show that φ is proper. To show that φ is proper, we take a sequence

xk = (sk, tk) ∈ ΩT∗
0 which exits every compact set, so that either lim sup sk = ∞ or

lim sup tk−sk
1−µ = T∗, and we claim that lim sup |φ(xk)| =∞. Passing to a subsequence

we may assume either tk ≤ sk for all k or tk ≥ sk for all k. We treat first the

case that tk ≤ sk for all k. From (5.7) we have φ0(sk, tk) = tk, so if lim sup tk =

∞ we are done. Thus we may take that tk ≤ C and lim sup sk = ∞. But then

writing φ(s, t) = (t, γ(s, t)), since |γt(s, t)| ≤ 1 it follows |γ(sk, tk) − γ(sk, 0)| ≤∫ tk
0 |γt(sk, τ)|dτ ≤ C and since lim sup |γ(sk, 0)| =∞ (because C is proper) we deduce
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that lim sup |γ(sk, tk)| =∞ so we are also done. Next we treat the case that tk ≥ sk

for all k. From (5.7) we have φ0(sk, tk) = sk−µtk
1−µ + z

(
tk−sk
1−µ

)
where we recall that

z : [0, T∗) → [0,∞) is strictly increasing and surjective. Since sk − µtk ≥ 0 it follows

that if lim sup tk−sk
1−µ = T∗ then lim supφ0(sk, tk) ≥ lim sup z

(
tk−sk
1−µ

)
= ∞, whilst if

tk−sk
1−µ ≤ C < T∗ then lim supφ0(sk, tk) ≥ lim sup sk−µtk

1−µ ≥ lim sup sk − µC = ∞. We

have now treated all possible cases and shown lim sup |φ(xk)| = ∞ as claimed. So φ

is proper.

Next we will show that φ satisfies φ0
t ≥ 1

2 as well as the isothermal conditions

‖φt±φs‖2 = 0. From the d’Alembert formula (5.7) we have φ0
t (s, t) = 1 for s ≥ t and

from (5.7) and (5.21) we have

φ0
t (s, t) = −µ

1− µ + 1
1− µż

(
t− s
1− µ

)
≥ −µ

1− µ + 1
1− µ

1 + µ

2 = 1
2 (5.30)

for t > s, so φ0
t ≥ 1

2 . That φ satisfies the isothermal conditions ‖φt ± φs‖2 = 0 could

be checked directly from (5.7), but let us give a more intuitive proof. Define

Z±(s, t) = φt(s, t)± φs(s, t)

so that what we want to show is ‖Z±(s, t)‖2 = 0 for all (s, t) ∈ ΩT∗
µ (i.e. the vectors

Z± are null). From (5.16) and (5.17) we have

‖Z±(s, 0)‖2 = 0 (5.31)

for all s ∈ [0,∞) and since the boundary parametrization z satisfies (5.20) one may

compute from (5.7) that the condition

⟪φs(µt, t), φt(µt, t)⟫ = 0 (5.32)
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is satisfied for all t ∈ [0, T∗). Since φ satisfies the wave equation (5.22), it follows

(∂t∓∂s)Z± = 0 so it follows ‖Z+(s, t)‖2 is constant along lines s+ t = constant whilst

‖Z−(s, t)‖2 is constant along lines s − t = constant. From (5.31) then we deduce

‖Z+(s, t)‖2 = 0 for all (s, t) ∈ ΩT∗
µ and ‖Z−(s, t)‖2 = 0 for all (s, t) ∈ ΩT∗

µ ∩ {s ≥

t}. But then, by the identity ‖Z+‖2 − ‖Z−‖2 = 4⟪φs, φt⟫ and by (5.32) we have

‖Z−(µt, t)‖2 = 0, so ‖Z−(s, t)‖2 = 0 for all (s, t) ∈ ΩT∗
µ ∩ {t ≥ s}. Thus we have

shown ‖Z±(s, t)‖2 = 0 for all (s, t) ∈ ΩT∗
µ as desired.

Finally, since ‖φt ± φs‖2 = 0 and φtt − φss = 0 it follows that φ is a timelike

maximal immersion conformal with respect to the metric ds2 − dt2 on ΩT∗
µ \ K where

K =
{

(s, t) ∈ ΩT∗
µ : ‖φs(s, t)‖2 = 0

}
(5.33)

and the fact that

K =
{

(s, t) ∈ ΩT∗
µ : rank(dφ) 6= 2

}
(5.34)

is an equivalent definition follows from the identity φs(s, t) = 1
2(Z+(s, t) − Z−(s, t))

together with the fact that the sum of two null vectors is null iff the vectors are

linearly dependent.

The following is an immediate consequence of Proposition 5.5.

Corollary 5.6. For any C2×C1×C2 initial-boundary data (C, V,Γ) satisfying the C2

compatibility condition (5.15) there is a closed subset Σ ⊆ R1+2 contained in the future

of Im(C) with ∂Σ = Im(Γ) ∪ Im(C) and a (possibly empty) closed subset Σsing ⊆ Σ

of Hausdorff dimension < 2 such that Σ \ Σsing is a C2 immersed timelike maximal

surface-with-boundary which contains an open neighbourhood of ∂Σ in Σ and with V

tangent to Σ \ Σsing along C.
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Proof. Let φ : ΩT∗
µ → R1+2 be the evolution of (C, V,Γ) by isothermal gauge as in

Definition 5.4. Let K be as in (5.26) and write

Σ = φ(ΩT∗
µ )

Σsing = φ(K).

By Proposition 5.5 we have that φ is proper so Σ is closed, and φ is a timelike maximal

immersion on ΩT∗
µ \K so Σ\Σsing is an immersed timelike maximal surface. We know

that ΩT∗
µ \ K contains a neighbourhood of ∂ΩT∗

µ because the timelikeness of Γ implies

‖ d
dt

(φ(µt, t)) ‖2 = (µ2 − 1)‖φs(µt, t)‖2 6= 0 for all t ∈ [0,∞) whilst the timelikeness of

V implies ‖φs(s, 0)‖2 = −‖φt(s, 0)‖2 6= 0 for all s ∈ [0,∞). So Σ \ Σsing contains a

neighbourhood of ∂Σ by continuity and by construction we have ∂Σ = Im(Γ)∪ Im(C)

with V tangent to Σ \Σsing along C. That Σsing has Hausdorff dimension < 2 follows

from Sard’s theorem.

Remark 5.7 (Higher regularity). Suppose that K = ∅ so that Σ = Im(φ) is a C2

immersed timelike maximal surface. We may decompose Σ as Σ = Σ+ ∪ Σ− ∪ N

where

Σ+ = φ
(
ΩT∗
µ ∩ {s > t}

)
; Σ− = φ

(
ΩT∗
µ ∩ {s < t}

)
; N = φ

(
ΩT∗
µ ∩ {s = t}

)
.

If the initial data (C, V,Γ) is Ck×Ck−1×Ck for k ≥ 3, then Σ+ and Σ− will be Ck by

(5.7). However, Σ need not be better than C2 across the null curve N which emanates

from the corner φ(0, 0). In order to obtain higher regularity across N it is necessary

to impose further compatibility conditions on the data. This is an illustration of the

propagation of singularities by wave equations, and contrasts with the regularity of

minimal surfaces in Euclidean space.
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5.4 Analysis of the singular set

Let (C, V,Γ) be an initial-boundary data satisfying the C2 compatibility condition

(5.15) and let φ : ΩT∗
µ → R1+2 be the evolution of (C, V,Γ) by isothermal gauge as in

Definition 5.4. Recall from Proposition 5.5 that φ is a C2 proper timelike maximal

immersion (a global solution to IBVP 5.1) iff the singular set

K =
{

(s, t) ∈ ΩT∗
µ : rank(dφ) 6= 2

}
=
{

(s, t) ∈ ΩT∗
µ : ‖φs(s, t)‖2 = 0

}
(5.35)

is empty.

Note that, in the “good” region {s ≥ t}, the evolution by isothermal gauge is of

the form φ(s, t) = (t, γ(s, t)), and is indistinguishable from that considered in Chapter

4 (for the initial value problem). Thus the analysis of §4.2 may be applied directly

to the set K∩{s ≥ t}. In this section we will extend the analysis of §4.2 to a certain

class of singular points p ∈ K ∩ {t > s}. In particular, we will prove the following

result, which should be noted as suboptimal in comparison with Lemma 4.3.

Lemma 5.8. Let (C, V,Γ) be a C2 × C1 × C2 initial-boundary data satisfying the

C2 compatibility condition (5.15), let φ : ΩT∗
µ → R1+2 be the evolution of (C, V,Γ) by

isothermal gauge as in Definition 5.4 and let K be the singular set as in (5.35). For

(s0, t0) ∈ R2 and ε > 0 denote

Lε−(s0, t0) =
{
t0 − ε < t < t0, |s− s0| < t0 − t

}
⊆ R2. (5.36)

for the backward characteristic triangle of height ε emanating from the point (s0, t0).

Suppose that there exists q ∈ K and ε > 0 such that

(
ĞLε−(q) \ {q}

)
∩ K = ∅.
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Then for every neighbourhood U of q, the set φ(U) is not a subset of any C2 immersed

surface in R1+2.

To prove Lemma 5.8 we will apply Theorem 3.1 together with the following result

(compare with Lemma 4.2).

Lemma 5.9. Let (C, V,Γ) be a C2 × C1 × C2 initial-boundary data satisfying the

C2 compatibility condition (5.15), let φ : ΩT∗
µ → R1+2 be an evolution of (C, V,Γ) by

isothermal gauge and let K denote the singular set (5.26). Suppose that for some

neighbourhood U of a point q ∈ ∂K there exists a C1 embedded surface T ⊆ R1+2

such that φ(U) ⊆ T . Then T is null at φ(q).

Proof of Lemma 5.9. Let T ⊆ R1+2 be a C1 embedded surface such that φ(U) ⊆ T

for some neighbourhood U of a point q ∈ ∂K. For all (s, t) ∈ ΩT∗
µ , we have null

vectors given by Z±(s, t) = φt(s, t)± φs(s, t) and these null vectors span the tangent

space Tφ(s,t)T provided (s, t) ∈ U \K. To prove the lemma we will first show that the

vectors Z±(s, t) are non-zero for all (s, t) ∈ ΩT∗
µ and we will then argue exactly as in

the proof of Lemma 4.2.

Let us show that the null vectors Z±(s, t) are non-zero for all (s, t) ∈ ΩT∗
µ . Indeed,

since (∂t ∓ ∂s)Z± = 0, in the region ΩT∗
µ ∩ {s ≥ t} we obtain the formulas

Z+(s, t) = Z+(s+ t, 0) = A+(s+ t) (5.37)

Z−(s, t) = Z−(s− t, 0) = A−(s− t) (5.38)
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whilst in the region ΩT∗
µ ∩ {t > s} we obtain

Z+(s, t) = Z+(s+ t, 0) = A+(s+ t) (5.39)

Z−(s, t) = Z−(µη, η) = 2φt(µη, η)− Z+(µη, η)

= 2φt(µη, η)− Z+((1 + µ)η, 0)

= 2
(
ż(η) dΓ

dx0 (z(η))− µφs(µη, η)
)
− Z+((1 + µ)η, 0)

= 2
1− µż(η) dΓ

dx0 (z(η))− 1 + µ

1− µA+((1 + µ)η)

(5.40)

for some η ∈ (0,∞) where A±(s) = V (s) ± C ′(s) and where we appealed to

d’Alembert’s formula (5.7) to evaluate φs(µη, η) in the last formula. Since A± are

non-zero and since A+(·) is null whilst ż(·) dΓ
dx0 (z(·)) is non-zero and timelike we de-

duce from (5.37)–(5.40) that the null vectors Z±(s, t) are non-zero for all (s, t) ∈ ΩT∗
µ

as claimed.

Now, take a sequence of points qn ∈ U \ K with qn → q. For each qn the tangent

space Tφ(qn)T to T at φ(qn) is a timelike plane spanned by the distinct null vectors

Z+(qn) and Z−(qn). Since T is a C1 embedded surface, the limit limqn→q Tφ(qn)T =

Tφ(q)T exists. Since K is given by (5.26) we have that Z+(q) = limqn→q Z+(qn) and

Z−(q) = limqn→q Z−(qn) are non-vanishing and linearly dependent, so the null lines

along which the tangent planes Tφ(qn)T intersect the light cone converge as qn → q.

It follows that Tφ(q)T is a null plane, which proves the lemma.

We will now give the proof of Lemma 5.8.

Proof of Lemma 5.8. Let q = (s0, t0) ∈ ∂K and ε > 0 be such that

(
ĞLε−(q) \ {q}

)
∩ K = ∅

where Lε−(q) is as in (5.36) and suppose for a contradiction that for some neighbour-
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hood U of q there exists a C2 immersed surface T ⊆ R1+2 such that φ(U) ⊆ T . For

simplicity we will assume that T is embedded. If T is not embedded then we can

just run the argument below on a single leaf of T .

By Lemma 5.9 it follows that T is null at φ(q). Then by the implicit function

theorem there exists a neighbourhood W of φ(q) in T and a C2 diffeomorphism

ψ : (−δ0, δ0)× (τ0 − δ0, τ0 + δ0)→ W

of the form

ψ(ξ, τ) = (τ, γ(ξ, τ))

for some δ0 > 0 where

ψ(0, τ0) = φ(q). (5.41)

By taking ε > 0 smaller if necessary we may assume that φ(Lε−(q)) is contained in

W .

To prove the Lemma we will show that there exists a ξ0 : [τ0 − δ1, τ0]→ (−δ0, δ0)

for some δ1 ∈ (0, δ0) with ξ0(τ0) = 0 such that the curve τ 7→ ψ(ξ0(τ), τ) is contained

in φ(Lε−(q)) for τ ∈ [τ0 − δ1, τ0) and such that the tangent vector d
dτ
ψ(ξ0(τ), τ) is

orthogonal to the cross section {x0
∣∣∣
W

= τ} for all τ ∈ [τ0−δ1, τ0). We will then apply

Theorem 3.1 to deduce that

∫ τ0

τ0−δ1
|k(ξ0(τ), τ)|dτ =∞

where k(·, τ) denotes the curvature of the planar cross section γ(·, τ), giving the

desired contradiction.
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To this end, let

i+ : [t0 − ε, t0)→ ΩT∗
µ ; i+(t) = (s0 + t0 − t, t)

and

i− : [t0 − ε, t0)→ ΩT∗
µ ; i−(t) = (s0 − t0 + t, t)

be curves which trace the right hand and left hand sides of the triangle Lε−(q) respec-

tively. Since φ is an immersion on ĞLε−(q)\{q} and ∂tφ0 > 0, it follows that φ◦ i+ and

φ ◦ i− are C2 future-directed null curves with

lim
t↑t0

(
φ ◦ i+

)
(t) = lim

t↑t0

(
φ ◦ i−

)
(t) = φ(q). (5.42)

Since φ is a C2 timelike immersion on ĞLε−(q)\{q} it follows that φ
(

ĞLε−(q)\{q}
)
⊆ W

is a C2 timelike surface, so there exists a pair of C1 future-directed null tangent vector

fields N+ and N− on φ
(

ĞLε−(q) \ {q}
)
which provide a frame for the tangent bundle

of φ
(

ĞLε−(q) \ {q}
)
. We then have that after reparametrisation (and after relabelling

N+ and N− if necessary) the curve φ ◦ i+ is an integral curve of the vector field N−

and the curve φ ◦ i− is an integral curve of the vector field N+. In other words, we

have

d

dt

(
φ ◦ i+

)
(t) = λ+(t)N−

(
φ ◦ i−(t)

)
(5.43)

d

dt

(
φ ◦ i−

)
(t) = λ−(t)N+

(
φ ◦ i+(t)

)
(5.44)

for all t ∈ [t0 − ε, t0) for some λ± : [t0 − ε, t0)→ (0,∞).

Now, let the null curves φ◦ i+ and φ◦ i− be parametrised in the (ξ, τ) coordinates
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as τ 7→ (ξ+(τ), τ) and τ 7→ (ξ−(τ), τ) respectively where ξ± : [τ0 − δ±, τ0)→ [−δ0, δ0]

for some δ± ∈ (0, δ0]. By (5.41)–(5.42) we have

lim
τ↑τ0

ξ+(τ) = lim
τ↑τ0

ξ−(τ) = 0 (5.45)

and from (5.43)–(5.44) it follows that the quantities
〈
d
dτ
γ
(
ξ+(τ), τ

)
, γξ

(
ξ+(τ), τ

)〉
and〈

d
dτ
γ
(
ξ−(τ), τ

)
, γξ

(
ξ−(τ), τ

)〉
are non-vanishing and satisfy

sgn
〈
d

dτ
γ
(
ξ+(τ), τ

)
, γξ

(
ξ+(τ), τ

)〉
= − sgn

〈
d

dτ
γ
(
ξ−(τ), τ

)
, γξ

(
ξ−(τ), τ

)〉

for all τ ∈ [τ0 −min{δ+, δ−}, τ0). Reparametrising ξ 7→ −ξ as necessary we may take

that

〈
d

dτ
γ
(
ξ+(τ), τ

)
, γξ

(
ξ+(τ), τ

)〉
< 0〈

d

dτ
γ
(
ξ−(τ), τ

)
, γξ

(
ξ−(τ), τ

)〉
> 0

which implies

dξ+

dτ
(τ) <

−
〈
γξ
(
ξ+(τ), τ

)
, γτ

(
ξ+(τ), τ

)〉
∣∣∣γξ(ξ+(τ, τ), τ

)∣∣∣2 (5.46)

dξ−
dτ

(τ) >
−
〈
γξ
(
ξ−(τ), τ

)
, γτ

(
ξ−(τ), τ

)〉
∣∣∣γξ(ξ−(τ, τ), τ

)∣∣∣2 (5.47)

for all τ ∈ [τ0 −min{δ+, δ−}, τ0).

We now observe that the curve τ 7→ ψ(ξ0(τ), τ) will run orthogonal to the cross
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sections {x0
∣∣∣
W

= τ} provided ξ0 satisfies

dξ0

dτ
(τ) =

−
〈
γξ
(
ξ0(τ), τ

)
, γτ

(
ξ0(τ), τ

)〉
∣∣∣γξ(ξ0(τ, τ), τ

)∣∣∣2
ξ0(τ0) = 0,

(5.48)

so let ξ0 : [τ0 − δ1, τ0] → [−δ0, δ0] for some δ1 ∈ (0,min{δ+, δ−}] denote the unique

C2 solution to the terminal value problem (5.48). From (5.42) and (5.46)–(5.48), by

comparison principle we then arrive at the identity

ξ−(τ) < ξ0(τ) < ξ+(τ)

for all τ ∈ [τ0 − δ1, τ0). So the curve τ 7→ ψ(ξ0(τ), τ) is contained in φ(Lε−(q)) as

desired, and we will now proceed to apply Theorem 3.1 and complete the proof.

Introduce new coordinates (ξ̃, τ̃) on a domain Ω defined by

Ω =
{
τ0 − δ1 < τ̃ < τ0, ξ−

(
τ̃
)
− ξ0

(
τ̃
)
< ξ̃ < ξ+

(
τ̃
)
− ξ0

(
τ̃
)}
⊆ R2

and define a new parametrisation ψ̃ : sΩ→ W by

ψ̃
(
ξ̃, τ̃

)
:=
(
τ̃ , γ̃

(
ξ̃, τ̃

))
:=
(
τ̃ , γ

(
ξ0(τ̃) + ξ̃

))
.

By (5.48) we see that
〈
γ̃ξ̃
(
0, τ̃

)
, γ̃τ̃

(
0, τ̃

)〉
= 0 and since ψ is null at the point (0, τ0)

it follows that
∣∣∣γ̃τ̃ (0, τ0)|2 = 1, so ψ̃ satisfies the conditions for Theorem 3.1. Writing

k(·, τ) for the curvature of the cross section γ(·, τ) and by Theorem 3.1 we have

∫ τ0

τ0−δ2
|k(ξ0(τ), τ)|dτ =∞.

But then ψ is not C2, giving the desired contradiction. The Lemma is proved.
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5.5 Examples with T∗ =∞ and T∗ <∞

The following example is trivial, but it gives some intuition as to the geometry un-

derlying the cases T∗ =∞ and T∗ <∞.

Example 5.10 (An example illustrating the cases T∗ = ∞ and T∗ < ∞). Let

f : [0,∞) → R be a smooth function which satisfies f(0) = f ′(0) = f ′′(0) = 0 and

−1 < f ′(x0) ≤ 0 for all x0 ∈ [0,∞) and consider an initial-boundary data (C, V,Γ)

where Γ: [0,∞)→ R1+2 is defined by

Γ(x0) = (x0, f(x0), 0),

where C : [0,∞) → R1+2 is given by C(s) = (0, s, 0) and where V (s) = (1, 0, 0) for

all s ∈ [0,∞). Since Im(Γ), Im(C) and Im(V ) are contained in the timelike plane

{x2 = 0} ⊆ R1+2, the solution to the IBVP is obvious in this case. It is just the

subset of the timelike plane given by

Σ = {x0 ≥ 0, x1 ≥ f(x0)} ⊆ {x2 = 0} ⊆ R1+2.

Let us compute the maximal interval of existence [0, T∗) for the equation (5.20). We

have µ = 0 and A+(s) = (1, 1, 0) for all s ∈ [0,∞), so (5.20) reads

dz

dt
(t) =

⟪ dΓ
dx0 (z(t)), A+(t)⟫
‖ dΓ
dx0 (z(t))‖2 = 1

1 + f ′(z(t)) ,

z(0) = 0

which integrates to

z(t) + f(z(t)) = t.

115



Figure 5.3: A smooth conformal equivalence between two subsets of R1+1.
The right hand domain is a closed subset of R1+1 whose timelike boundary
is not uniformly timelike, and the left hand domain is smoothly conformally
equivalent to Ω1

0 as in (5.4).

So we deduce that T∗ < ∞ iff limx0↑∞(x0 + f(x0)) < ∞ i.e. iff the timelike curve

x0 7→ Γ(x0) = (x0, f(x0), 0) asymptotes to a null line of the form x0 7→ (x0, b− x0, 0)

for some b ∈ (0,∞) as x0 ↑ ∞.

Some geometric thinking quickly sheds light on this situation. The evolution by

isothermal gauge φ : ΩT∗
µ → R1+2 of (C, V,Γ) is a conformal equivalence which maps

the null lines {s+ t = constant} and {s− t = constant} onto null lines in Σ = Im(φ),

which are just null lines in R1+2 since Im(φ) is a subset of the plane {x2 = 0}. If

the timelike boundary curve x0 7→ Γ(x0) = (x0, f(x0), 0) asymptotes to a null line of

the form x0 7→ (x0, b− x0, 0) for some b ∈ (0,∞) as x0 ↑ ∞, then it follows that the

null curves in Im(φ) emanating from C(s) for s ≥ b never reach the boundary curve

Im(Γ), which is consistent with the conformal structure of Ω1
0. See Figure 5.3 for an

illustration of this.
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5.6 A (non-perturbative) sufficient condition on

the initial-boundary data for global existence

It follows from Proposition 5.5 together with Lemma 5.8 that that the condition

‖φs(s, t)‖2 6= 0 (5.49)

for all (s, t) ∈ ΩT∗
µ is a necessary and sufficient condition for the evolution by isother-

mal gauge of a C2 × C1 × C2 initial-boundary data (C, V,Γ) to give a C2 global

solution to the IBVP. Moreover, in principle at least, this condition may be checked

in terms of the initial-boundary data from the d’Alembert formula (5.7). Indeed,

writing A±(s) = φt(s, 0)± φs(s, 0), from (5.7) and (5.20) we may compute that

φs(s, t) =



1
2 (A+(s+ t)− A−(s− t)) for s ≥ t

1
2 (A+(s+ t) + A+(s− t))

−1+µ
1−µP〈 dΓ

dx0 (z( t−s1−µ))〉
(
A+

(
1+µ
1−µ(t− s)

))
for t > s

(5.50)

where

P〈 dΓ
dx0 (z( t−s1−µ))〉

(
A+

(
1 + µ

1− µ(t− s)
))

:=
⟪ dΓ
dx0

(
z
(
t−s
1−µ

))
, A+

(
1+µ
1−µ(t− s)

)
⟫∥∥∥ dΓ

dx0

(
z
(
t−s
1−µ

))∥∥∥2
dΓ
dx0

(
z

(
t− s
1− µ

))

is the orthogonal projection of the null vector A+
(

1+µ
1−µ(t− s)

)
onto the timelike line

span
{
dΓ
dx0

(
z
(
t−s
1−µ

))}
. In practice, however, this formula may not be given explicitly

and it is hard to check the condition (5.49) in the region t > s since in general the

equation (5.20) for z cannot be solved by hand. The following remark gives some
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preliminary heuristics, nonetheless.

Remark 5.11. Since the sum of two null vectors is null iff the vectors are linearly

independent, from (5.50) we see that φ will be non-singular in the region s ≥ t iff

A+(ξ) and A−(η) are linearly independent for all ξ ≥ η ≥ 0. In the region t > s, on

the other hand, note that singularity formation is governed solely by the outgoing null

direction A+. In particular, suppose the initial data (C, V ) is such that A+(s) = A0

for some fixed null vector A0 for all s ∈ [0,∞). Then since the sum of a timelike

vector and a null vector is never null, it follows from (5.50) that ‖φs(s, t)‖2 6= 0 for all

t > s so φ will be non-singular in the region t > s for any choice of boundary curve

Γ in this case.

In the following proposition we will give a condition on the initial-boundary data

(C, V,Γ) which is sufficient to ensure that the evolution by isothermal gauge is non-

singular and which is more easily checked by hand than (5.49).

Proposition 5.12. Let (C, V,Γ) be a C2 × C1 × C2 initial-boundary data satisfying

the C2 compatibility condition (5.15). With C(s) = (0, c(s)) write

U0(s) = c′(s)
|c′(s)| = (cosϑ(s), sinϑ(s))

for the unit-tangent vector along C, let the initial velocity be given as V (s) = (1, v(s))

where 〈c′(s), v(s)〉 = 0, let the boundary curve Γ: [0,∞)→ R1+2 be parameterised as

Γ(x0) = (x0, σ(x0)) and let z : [0, T∗) → [0,∞) be the unique inextendible solution to

(5.20). Suppose there exists r ∈ [0,∞) such that

∣∣∣ dσ
dx0 (z(η))

∣∣∣
1 +

∣∣∣ dσ
dx0 (z(η))

∣∣∣ + sup
ξ≥(1+µ)η

{
| sin(ϑ(ξ)− ϑ(r))|+ |v(ξ)|

}
< 1 (5.51)

for all η ∈ [0, T∗). Then the evolution φ : ΩT∗
µ → R1+2 by isothermal gauge of (C, V,Γ)
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(as in Definition 5.4) is a C2 immersion (i.e. K = ∅).

Remark 5.13 (C1 stability of the quadrant of a timelike plane). Suppose that

(C, V,Γ) is an initial-boundary data satisfying the C2 compatibility condition (5.15)

such that the unit tangent U0(s) along C(s) is close (in the C0 sense) to the unit

vector (0, 1, 0) for all s ∈ [0,∞), such that V (s) = (1, v(s)) where |v(s)| is small (in

the C0 sense) for all s ∈ [0,∞), and such that the unit tangent along Γ(x0) is close

(in the C0 sense) to the unit vector (1, 0, 0) for all x0 ∈ [0,∞). Then it is clear that

(5.51) will be satisfied and the evolution φ : ΩT∗
µ → R1+2 of (C, V,Γ) by isothermal

gauge will be non-singular in this case. Moreover, it may readily be checked from the

d’Alembert formula that, within such a smallness regime, φ will be an embedding and

Im(φ) will be a C2 graph over some timelike plane. This may be interpreted as a C1

stability result for the timelike planar quadrant {x0 ≥ 0, x1 ≥ 0, x2 = 0} ⊆ R1+2. An

interesting point is that the conformal structure of the solution ΩT∗
µ (i.e. the conformal

structure of null infinity) is preserved by this stability result.

Remark 5.14 (‘End cases’ of estimate (5.51)). Let us remark upon some borderline

cases for estimate (5.51). Suppose first Γ is a straight line perpendicular to the

hyper-plane {x0 = 0} so σ̇ ≡ 0. By rotating frame we may take ϑ(r) = 0 so (5.51)

reads

sup
ξ∈[0,∞)

{| sinϑ(ξ)|+ |v(ξ)|} < 1.

As usual, writing A±(s) = (1, a±(s)) with a±(s) =
(

cosα±(s), sinα±(s)
)
, and by

trigonometry one can easily see that

| sinα±(s)| ≤ | sinϑ(s)|+ |v(s)| (5.52)

so | sinα±(s)| < 1 for all s ∈ [0,∞) or equivalently cosα±(s) 6= 0 for all s ∈ [0,∞).
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Since ϑ(r) = 0, we have cosα+(r) > 0 and cosα−(r) < 0, and thus cosα+(s) > 0

and cosα−(s) < 0 for all s ∈ [0,∞). In other words Im(a+) is contained in the right

hand semi-circle and Im(a−) is contained in the left hand semi-circle (we will revisit

this condition in Theorem 5.15). If Γ is a straight line perpendicular to {x0 = 0} and

C(s) = (0, s, 0) (i.e. Im(C) is a half-line) then ϑ ≡ 0, so any timelike velocity V along

C is permissible (compare with Corollary 4.11) whilst, on the other hand, if v ≡ 0

(i.e. V ≡ ∂x0) we see that any curve C for which the image of the unit tangent map

Im(U0) is contained in an open semi-circle is permissible. In particular, writing k for

the curvature of C and l for the arclength of C, by the identity dϑ
dl

(l) = k(l) we see

that any curve C with absolute total curvature

∫ ∞
0
|k(s)|dl(s) < π

is permissible. Next, suppose that C is a straight line and V ≡ ∂x0 . Then (5.51)

reads
∣∣∣ dσ
dx0 (z(η))

∣∣∣
1 +

∣∣∣ dσ
dx0 (z(η))

∣∣∣ < 1

for all η ∈ [0, T∗) and so any timelike curve Γ is permissible. In general, condition

(5.51) interpolates between the extremes described above.

Proof of Proposition 5.12. Let z : [0, T∗) → [0,∞) be the inextendible solution to

(5.20), ΩT∗
µ be the conformal domain (5.4), φ : ΩT∗

µ → R1+2 be the solution of the

initial-boundary problem (5.22)–(5.25), and K be the singular set as in (5.26). By

rotating frame, we may assume without loss of generality that ϑ(r) = 0 so that (5.51)
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reads

|σ̇(z(η))|
1 + |σ̇(z(η))| + sup

ξ≥(1+µ)η

{
| sinϑ(ξ)|+ |v(ξ)|

}
< 1 for all η ∈ [0, T∗). (5.53)

We will show that K = ∅ so that φ is a C2 timelike immersion and Σ = φ(ΩT∗
µ ) gives

our desired timelike maximal surface.

We first handle the region ΩT∗
µ ∩ {s ≥ t}. From (5.53), we have

sup
s∈[0,∞)

{| sinϑ(s)|+ |v(s)|} < 1, (5.54)

and we claim that (5.54) implies K ∩ {s ≥ t} = ∅. Indeed, as before, writing C(s) =

(0, c(s)), V (s) = (1, v(s)) and a±(s) = v(s) ± c′(s) =
(

cosα±(s), sinα±(s)
)
for the

initial null directions, from (5.52) and (5.54) we have | sinα±(s)| < 1 for all s ∈ [0,∞)

or equivalently cosα±(s) 6= 0 for all s ∈ [0,∞). Since ϑ(r) = 0, we have cosα+(r) > 0

and cosα−(r) < 0, and thus cosα+(s) > 0 and cosα−(s) < 0 for all s ∈ [0,∞) (i.e.

Im(a+) is contained in the right hand semi-circle and Im(a−) is contained in the left

hand semi-circle). So a+(ξ) 6= a−(η) for all ξ, η ∈ [0,∞) which implies K∩{s ≥ t} = ∅

as claimed.

Next, we move on to the region ΩT∗
µ ∩ {t ≥ s}. Introduce the coordinates

ξ = s+ t

η = t− s
1− µ
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and observe η ∈ [0, T∗) and ξ ≥ (1 + µ)η on ΩT∗
µ ∩ {t ≥ s}. From (5.50) we have

‖φs(s, t)‖2 =
∥∥∥∥∥1

2

(
A+(ξ) +

(
1 + µ

1− µ

)
A+((1 + µ)η)

)

−
(

1 + µ

1− µ

) ⟪ dΓ
dx0 (z(η)), A+((1 + µ)η)⟫

‖ dΓ
dx0 (z(η))‖2

dΓ
dx0 (z(η))

∥∥∥∥∥
2

=
(

1 + µ

1− µ

)
⟪A+(ξ), A+((1 + µ)η)⟫

+
(

1 + µ

1− µ

)2 ⟪ dΓ
dx0 (z(η)), A+((1 + µ)η)⟫2

‖ dΓ
dx0 (z(η))‖2

−
(

1 + µ

1− µ

)
⟪A+(ξ) +

(
1 + µ

1− µ

)
A+((1 + µ)η), dΓ

dx0 (z(η))⟫

×
⟪ dΓ
dx0 (z(η)), A+((1 + µ)η)⟫∥∥∥ dΓ

dx0 (z(η))
∥∥∥2

=
(

1 + µ

1− µ

)(
⟪A+(ξ), A+((1 + µ)η)⟫

−
⟪A+(ξ), dΓ

dx0 (z(η))⟫⟪A+((1 + µ)η), dΓ
dx0 (z(η))⟫∥∥∥ dΓ

dx0 (z(η))
∥∥∥2

)

so the condition ‖φs(s, t)‖2 > 0 for all t > s becomes

1
2⟪A+(ξ), A+((1 + µ)η)⟫‖ dΓ

dx0 (z(η))‖2

− ⟪A+(ξ), dΓ
dx0 (z(η))⟫⟪A+((1 + µ)η), dΓ

dx0 (z(η))⟫ < 0

for all η ∈ [0, T∗), ξ ≥ (1 + µ)η which is equivalent to

1
2
(
1− 〈a+(ξ), a+((1 + µ)η)〉

)
<

(1− 〈a+(ξ), dσ
dx0 (z(η))〉)(1− 〈a+((1 + µ)η), dσ

dx0 (z(η))〉)
1−

∣∣∣ dσ
dx0 (z(η))

∣∣∣2
(5.55)

for all η ∈ [0, T∗), ξ ≥ (1 + µ)η. In particular, by Cauchy-Schwarz and since |a+| = 1,
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observe that (5.55) will be satisfied provided

1
2 (1− 〈a+(ξ), a+((1 + µ)η)〉) <

(1−
∣∣∣ dσ
dx0 (z(η))

∣∣∣)2

1−
∣∣∣ dσ
dx0 (z(η))

∣∣∣2 =
1−

∣∣∣ dσ
dx0 (z(η))

∣∣∣
1 +

∣∣∣ dσ
dx0 (z(η))

∣∣∣
for all η ∈ [0, T∗), ξ ≥ (1 + µ)η, and we deduce that ‖φs(s, t)‖2 > 0 for all t > s

provided

∣∣∣ dσ
dx0 (z(η))

∣∣∣
1 +

∣∣∣ dσ
dx0 (z(η))

∣∣∣ + sup
ξ≥(1+µ)η

1
2 (1− 〈a+(ξ), a+((1 + µ)η)〉) < 1 (5.56)

for all η ∈ [0, T∗). Thus to see that K ∩ {t ≥ s} = ∅ it suffices to show that (5.56) is

satisfied.

Denote by

ω(ξ, η) = arccos〈a+(ξ), a+((1 + µ)η)〉

the angle between the vectors a+(ξ) and a+((1 + µ)η). Since Im(a+) is contained in

the right hand semi-circle, it follows that

|ω(ξ, η)|
2 ≤ sup

ξ≥(1+µ)η
|α+(ξ)| < π

2

for ξ ≥ (1 + µ)η. From (5.52) we then arrive at

1
2(1− 〈a+(ξ), a+((1 + µ)η)〉) = 1

2(1− cosω(ξ, η)) = sin2 ω(ξ, η)
2

≤ sup
ξ≥(1+µ)η

sin2(α+(ξ))

≤ sup
ξ≥(1+µ)η

| sin(α+(ξ))|

≤ sup
ξ≥(1+µ)η

{| sinϑ(ξ)|+ |v(ξ)|} ,

(5.57)

123



and (5.56) follows from (5.51) and (5.57). Thus K∩ {t > s} = ∅ and the Proposition

is proved.

5.7 The case where the timelike boundary curve

is a straight line

In this section we will analyse the special case that the timelike boundary curve Γ is

a half-line. Choosing inertial coordinates (x0, x1, x2) on R1+2 appropriately. without

loss of generality we may take Γ to be given by Γ: [0,∞)→ R1+2, Γ(x0) = (x0, 0, 0).

This case is particularly simple to analyse as the differential equation (5.20) may be

solved explicitly.

Theorem 5.15. Let (C, V,Γ) be a C2 ×C1 ×C2 initial-boundary data satisfying the

C2 compatibility condition (5.15) where the boundary curve Γ: [0,∞) → R1+2 is the

half-line Γ(x0) = (x0, 0, 0), let φ : [0,∞)× [0,∞)→ R1+2 be the evolution of (C, V,Γ)

by isothermal gauge and write A±(s) = (1, a±(s)) for the future-directed null vectors

spanning the tangent space span
{
C ′(s), V (s)

}
. Then φ is an immersion iff Im(a+) is

contained in an open semi-circle and a+(ξ) 6= a−(η) for all ξ ≥ η ≥ 0.

Proof. The evolution of (C, V,Γ) by isothermal gauge may be computed as

φ : [0,∞)× [0,∞)→ R1+2; φ(s, t) = (t, γ(s, t))

where

γ(s, t) =


1
2

(
c(s+ t) + c(s− t) +

∫ s+t
s−t v(ζ)dζ

)
for s ≥ t

1
2

(
c(s+ t)− c(t− s) +

∫ s+t
t−s v(ζ)dζ

)
for t > s.

(5.58)
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Then φ is an immersion iff γs 6= 0 and from (5.58) we have

γs(s, t) =


1
2 (a+(s+ t)− a−(s− t)) for s ≥ t

1
2 (a+(s+ t) + a+(t− s)) for t > s

(5.59)

so φ is an immersion in the region s ≥ t iff a+(ξ) 6= a−(η) for all ξ ≥ η ≥ 0 whilst

φ is an immersion in the region t > s iff a+(ξ) 6= −a+(η) for all ξ, η ∈ [0,∞). This

proves the theorem.

Remark 5.16 (Self-intersecting global solutions). Just as in the case for the IVP

(recall Remark 4.8 and refer to Figure 4.2) it is easy to construct an initial-bounday

data (C, V,Γ) where Γ is the half-line Γ(x0) = (x0, 0, 0) for which the curve C is self-

intersecting and for which Im(a+) is contained in an open semi circle and a+(ξ) 6=

a−(η) for all ξ ≥ η ≥ 0, so that the evolution by isothermal gauge of (C, V,Γ) is

non-singular in this case (this hinges crucially on the fact that we consider here only

future evolutions).

Example 5.17 (An example of singularity formation due to the “reflection of waves

off the boundary”). Here we will give a simple example of an initial-boundary data

(C, V,Γ) where the boundary curve Γ: [0,∞)→ R1+2 is the half-line Γ(x0) = (x0, 0, 0)

such that the evolution φ by isothermal gauge of (C, V,Γ) is an immersion in the region

s ≥ t but not an immersion in the region t > s. That is to say, singularity only occurs

outside of the domain of dependence of the initial curve (i.e. due to contributions from

the boundary).

Let Γ: [0,∞)→ R1+2 be the half-line Γ(x0) = (x0, 0, 0) and let C : [0,∞)→ R1+2

be a smooth immersion C(s) = (0, c(s)) such that Im(ϑ) =
[
−π

4 ,
π
4

]
where

c′(s)
|c′(s)| =

(
cosϑ(s), sinϑ(s)

)
(5.60)
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denotes the unit tangent along C. We may construct a vector field V along C such

that Im(a−) is a single point whilst Im(a+) is a closed semi-circle (where we write

A±(s) = (1, a±(s)) for the null vectors spanning the plane span{C ′(s), V (s)} as usual).

Indeed, such a vector field is given explicitly by V (s) = (1, sinϑ(s)U0(s)⊥) where ⊥

denotes anticlockwise rotation in the plane by π
2 radians. From identity (5.59) we see

the evolution φ by isothermal gauge of (C, V,Γ) is an immersion in the region s ≥ t

but not an immersion in the region t > s.
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Chapter 6

Applications to further

initial-boundary value problems

6.1 An IBVP (of Neumann type) for a timelike

maximal surface which intersects a timelike

plane orthogonally along its timelike bound-

ary

In this section we will briefly consider an IBVP for a timelike maximal surface which

meets a given timelike surface orthogonally along its timelike boundary, which may

be thought of as a kind of Neumann boundary condition. Interestingly, we will see

that the IBVP of this section can be reduced to the one considered in Chapter 5, via

isothermal gauge considerations.

To keep the presentation simple, we will treat in this thesis only the case that the

timelike boundary surface is a plane, but let us state the Neumann IBVP in more

generality first. Let J ⊆ R1+2 be a C2 connected properly immersed timelike surface.
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Note that, by Morse theory, J is either an immersed S1×R or an immersed R2. Let

C : [0,∞) → R1+2 be a C2 proper immersion of the form C(s) = (0, c(s)) such that

C(0) ∈ J and such that C meets J orthogonally at 0 and let V be a C1 timelike

vector field along C such that V (0) ∈ TC(0)J . We call the trio (C, V,J ) an initial-

boundary data of Neumann type. Given such an initial-boundary data (C, V,J ), the

future (resp. past) IBVP is to find a C2 proper timelike maximal immersion

φ : [0,∞)× [0,∞)→ R1+2

such that s 7→ φ(s, 0) is a monotone reparameterisation of C, t 7→ φ(0, t) is a future-

directed (resp. past-directed) timelike embedding into the surface J along which φ

intersects J orthogonally, Im(φ) is contained in the future (resp. past) of Im(C) and

V is tangent to Im(φ) along C.

Remark 6.1. We note that, in contrast with the IBVP of §5.1, there do not seem to

be any natural C2 compatibility conditions for an initial-boundary data of Neumann

type. We will see however, that as before, a priori restrictions on the conformal

structure does impose C2 constraints on the data.

To keep the presentation simple, in this thesis we will consider only the case that

the timelike boundary surface is a plane. It should be clear from what follows, how-

ever, that the same methods may be applied to treat an arbitrary timelike boundary

surface. We will treat only the future IBVP since the past IBVP may be treated

analogously (the map x0 7→ −x0 is an isometry of R1+2).

Let J ⊆ R1+2 be a timelike plane. We may choose inertial coordinates (x0, x1, x2)

on R1+2 so that J = {x2 = 0}. Let (z+, z−) be null coordinates on J so that a

128



parameterisation of J is given by Ψ: R2 → R1+2;

Ψ(z+, z−) =
(
z+ + z−

2 ,
z+ − z−

2 , 0
)
. (6.1)

We seek timelike maximal surfaces orthogonal to J , and to this end we will look

for solutions with the conformal structure ΩT∗
0 for some T∗ ∈ (0,∞] where ΩT∗

0 is as

defined in (5.4).

Suppose that φ : ΩT∗
0 → R1+2 is a C2 timelike maximal immersion which is con-

formal with respect to the metric ds2 − dt2 on ΩT∗
0 , i.e. φ satisfies

‖φt ± φs‖2 = 0 (6.2)

φtt − φss = 0, (6.3)

and which is a solution to the future IBVP of Neumann type, so that φ satisfies the

initial-boundary conditions

φ(s, 0) = C(s) = (0, c(s)) (6.4)

φt(s, 0) = V (s) = (1, v(s)) (6.5)

φ(0, t) = Ψ(z+(t), z−(t)) (6.6)

where we assume that C : [0,∞) → R1+2 meets J = {x2 = 0} orthogonally at 0

with C(0) = (0, 0, 0), Im(φ) is contained in the future of Im(C), and the boundary

curve t 7→ φ(0, t) = Ψ(z+(t), z−(t)) is future-directed timelike with φ intersecting J

orthogonally along t 7→ φ(0, t).

We will now show that the boundary curve is uniquely determined by the initial

data.1 Since Σ = Im(φ) meets J orthogonally along the curve t 7→ φ(0, t), it follows
1It may be the case that this is a consequence of our imposition of conformal structure. At the

time of writing, the author is not sure whether or not this is the case.
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that the normal to Tφ(0,t)J ∼= J is contained in Tφ(0,t)Σ. But by (6.2) we have

⟪φs(0, t), φt(0, t)⟫ = 0 and so it then follows that φs(0, t) must be normal to Tφ(0,t)J .

Taking

φt(0, t) = ż+(t) ∂Ψ
∂z+

(z+(t), z−(t)) + ż−(t) ∂Ψ
∂z−

(z+(t), z−(t))

φt(0, t)⊥ = ż+(t) ∂Ψ
∂z+

(z+(t), z−(t))− ż−(t) ∂Ψ
∂z−

(z+(t), z−(t))

as an orthogonal basis for Tφ(0,t)J we then deduce by (6.3) that

0 = ⟪φs(0, t), φt(0, t)⟫ = ⟪φs(0, t) + φt(0, t)− φt(0, t), φt(0, t)⟫
= ⟪φs(t, 0) + φt(t, 0)− φt(0, t), φt(0, t)⟫ = ⟪A+(t)− φt(0, t), φt(0, t)⟫

0 = ⟪φs(0, t), φt(0, t)⊥⟫ = ⟪φs(0, t) + φt(0, t), φt(0, t)⊥⟫
= ⟪φs(t, 0) + φt(t, 0), φt(0, t)⟫ = ⟪A+(t), φt(0, t)⊥⟫.

and, after a bit of algebra, the above equations reduce to give the following equations

for (z+, z−) : [0, T∗)→ R2

ż+(t) =
⟪A+(t), ∂Ψ

∂z−
(z+(t), z−(t))⟫

⟪ ∂Ψ
∂z+

(z+(t), z−(t)), ∂Ψ
∂z−

(z+(t), z−(t))⟫ = 1 + a1
+(t), (6.7)

ż−(t) =
⟪A+(t), ∂Ψ

∂z+
(z+(t), z−(t))⟫

⟪ ∂Ψ
∂z+

(z+(t), z−(t)), ∂Ψ
∂z−

(z+(t), z−(t))⟫ = 1− a1
+(t), (6.8)

z+(0) = z−(0) = 0 (6.9)

where, as usual, A+(s) = V (s) +C ′(s) = (1, a+(s)). The equations (6.7)–(6.9) deter-

mine the C2 timelike boundary curve t 7→ φ(0, t) = Ψ(z+(t), z−(t)) uniquely in terms

of the outgoing null vector A+ (i.e. in terms of the initial data (C, V )).

Remark 6.2 (Conformal structure of null infinity). Note that, since φ is proper,
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we have z±(t) ↑ ∞ as t ↑ T∗ and from (6.7)–(6.8) we have |ż±(t)| ≤ 2 so it follows

necessarily that T∗ =∞. So we have shown that the conformal structure is necessarily

Ω∞0 = [0,∞)× [0,∞) ⊆ R1+1.

Remark 6.3. The fact that the equations (6.7)–(6.8) are linear and decoupled follows

since J = {x0 = 0} is a plane. For a general curved boundary surface, one obtains a

nonlinear coupled system for the boundary curve.

Next, as in §5.2, let us proceed to derive C2 compatibility conditions on the pair

(C, V ) at the point 0 (i.e. at the corner). We have by (6.3) that limt↓0 φtt(0, t) =

lims↓ φss(s, 0) which implies

z̈+(0) ∂Ψ
∂z+

+ z̈−(0) ∂Ψ
∂z−

= C ′′(0).

Applying (6.1) and (6.7)–(6.8) the x0-component of the above equation reads z̈+(0)+

z̈−(0) = 0, which is seen to hold automatically from (6.7)–(6.8), whilst the x1 and

x2 components read (v′)1(0) = 0 and (c′′)2(0) = 0 which, when expressed in terms of

arclength parameter l along c, read as

dv1

dl
(0) = 0 (6.10)

(1− |v(0)|2)d
2c2

dl2
(0)− 〈v(0), dv

dl
(0)〉dc

2

dl2
(0) = 0. (6.11)

Let’s now state formally the IBVP we are to consider here.

IBVP 6.4 (Future IBVP of Neumann type). Given a C2×C1×C2 initial-boundary

data (C, V,J ) of Neumann type where J is the timelike plane J = {x2 = 0} ⊆ R1+2

and where (C, V ) satisfies the C2 compatibility conditions (6.10)–(6.11), find a C2

proper timelike maximal immersion φ : [0,∞) × [0,∞) → R1+2 which is conformal

with respect to the metric ds2 − dt2 on [0,∞) × [0,∞) such that s 7→ φ(s, 0) is a
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monotone reparameterisation of C, t 7→ φ(0, t) is a future-directed timelike curve

along which φ intersects J orthogonally, and V is tangent to Im(φ) along C.

Definition 6.5. Suppose that (C, V,J ) is a C2 × C1 × C2 initial-boundary data

of Neumann type where J = {x2 = 0} ⊆ R1+2 is a timelike plane which satisfies

the C2 compatibility conditions (6.10)–(6.11). Let the initial data be parameterised

isothermally so that A±(s) = V (s)±C ′(s) are null vectors, let (z+, z−) : [0,∞)→ R2

be the unique C2 solution to (6.7)–(6.9) and let φ : [0,∞) × [0,∞) → R1+2 be the

unique solution to (6.3)–(6.6). Then we call φ the future evolution of (C, V,J ) by

isothermal gauge.

It may be checked (refer to the proof of Proposition 5.5 for the main ideas) that

the future evolution by isothermal gauge φ : [0,∞)× [0,∞)→ R1+2 of Definition 6.5

is a (global) solution to IBVP 6.4 iff φ is an immersion. Moreover, it is readily checked

that if φ is an immersion then φ intersects J orthogonally along the future-directed

timelike curve t 7→ φ(0, t).

Theorem 6.6. Let (C, V,J ) is a C2 × C1 × C2 initial-boundary data of Neumann

type where J = {x2 = 0} ⊆ R1+2 is a timelike plane which satisfies the C2 com-

patibility conditions (6.10)–(6.11), let φ : [0,∞) × [0,∞) → R1+2 be the future evo-

lution of (C, V,J ) by isothermal gauge as in Definition 6.5 and, as usual, write

A±(s) = (1, a±(s)) for the future-directed null vectors spanning the timelike plane

span{C ′(s), V (s)}. Then φ is a C2 immersion iff Im(a+) is contained in either the

upper open semi-circle {(a1, a2) ∈ S1 ⊆ R2 : a2 > 0} or the lower open semi-circle

{(a1, a2) ∈ S1 ⊆ R2 : a2 < 0} and a+(ξ) 6= a−(η) for all ξ ≥ η ≥ 0.

Remark 6.7 (Small-data global existence). It is clear that if the unit tangent U0(s)

along C(s) is close (in the C0 sense) to the fixed unit vector ω = (0, 1) for all s ∈ [0,∞)

and if V (s) = (1, v(s)) where |v(s)| is small for all s ∈ [0,∞) (in the C0 sense) then
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Im(a+) is contained in the right-hand open semi-circle and Im(a+) and Im(a−) are

disjoint subsets of S1 and so by Theorem 6.6 the future evolution of (C, V,J ) by

isothermal gauge will be non-singular in this case. Moreover, it may be checked from

a d’Alembert formula that the solution will be a C2 graph within such a smallness

regime.

Proof of Theorem 6.6. It may be seen that φ is of the form φ(s, t) = (t, γ(s, t)) and

from the d’Alembert formula one may compute directly that

γs(s, t) =


1
2

(
a+(s+ t)− a−(s− t)

)
for s ≥ t

1
2

(
a+(s+ t) + a+(t− s)

)
− p(a+(t− s)) for t > s

(6.12)

where p(a1, a2) := (a1, 0) denotes the orthogonal projection onto the line {x2 = 0}

in the x1–x2 plane. In particular, it may be seen to follow from (6.12) that φ is an

immersion in the region s ≥ t iff a+(ξ) 6= a−(η) ≥ 0 for all ξ ≥ η ≥ 0 whilst φ

is an immersion in the region t > s iff Im(a+) is contained in either the top open

semi-circle {(a1, a2) ∈ S1 ⊆ R2 : a2 > 0} or the bottom open semi-circle {(a1, a2) ∈

S1 ⊆ R2 : a2 < 0}. This proves the theorem.

6.2 An IBVP for a timelike maximal surface

bounded between a pair of parallel timelike

lines

In this section we will briefly consider an IBVP for a timelike maximal surface bounded

between a given pair of timelike curves. In this thesis we will only treat the case that

the boundary curves are a pair of parallel timelike lines, but let us state the problem

in full generality first. Let Γ1,Γ2 : R → R1+2 be a pair of C2 future-directed proper
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timelike immersions with Γ1(0),Γ2(0) ∈ {x0 = 0}, let C : [0, λ] → R1+2 be a C2

immersion of the form C(s) = (0, c(s)) with

C(0) = Γ1(0), C(λ) = Γ2(0), (6.13)

and let V be a C1 future-directed timelike vector field along C with

V (0) ∈ span
{
C ′(0), dΓ1

dx0 (0)
}
, V (λ) ∈ span

{
C ′(λ), dΓ2

dx0 (0)
}
. (6.14)

We call such (C, V,Γ1,Γ2) an initial-boundary data. Given an initial-boundary data

(C, V,Γ1,Γ2) the IBVP is to find a C2 proper timelike maximal immersion

φ : [0, 1]× R→ R1+2

such that s 7→ φ(s, 0) is a monotone reparameterisation of C, t 7→ φ(0, t) is a monotone

reparameterisation of Γ1, t 7→ φ(1, t) is a monotone reparameterisation of Γ2, and V

is tangent to Im(φ) along C. As before, a global solution is a proper immersion.

In this thesis we will treat the above IBVP only in the special case where the

prescribed timelike boundary curves are a pair of parallel sraight lines. The advantage

of this case is that the method of images (or, equivalently, d’Alembert’s method) may

be applied to give an explicit representation formula for the solution by isothermal

gauge (other cases of timelike boundary data are much harder to analyse). In addition,

we will look for solutions to the IBVP with the conformal structure

sD1+1 = [0, 1]× R ⊆ R1+1. (6.15)

Remark 6.8. Note that the conformal structure D1+1 = (0, 1) × R ⊆ R1+1 bears

some significance in Lorentzian geometry, and has been described by Kulkarni in
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the context of Lorentz surfaces as “a Lorentz analogue of [the unit disc] D2” [46,

Introduction]. From Kulkarni’s work, it may be seen to follow that any properly

immersed solution to the IBVP for a pair of timelike boundary curves will have an

induced metric which is C0 conformally equivalent to sD1+1 (in Kulkarni’s language,

the precise statement is that a simply connected Lorentzian surface is C0 conformally

equivalent to D1+1 iff its ideal boundary is smoothable and contains no characteristic

point [46, Section 3]).

Let Γ1,Γ2 : R → R1+2 be a pair of timelike parallel lines. By choosing inertial

coordinates (x0, x1, x2) on R1+2 appropriately and rescaling as necessary (recall that

the mean curvature is scale invariant) we may take that Γ1(x0) = (x0, 0, 0), Γ2(x0) =

(x0, 1, 0). We assume initial data of the form C : [0, λ]→ R1+2 where C(s) = (0, c(s))

and V (s) = (1, v(s)) and we look for a λ > 0 and a C2 timelike maximal immersion

φ : [0, λ] × R → R1+2 which is conformal with respect to the metric ds2 − dt2 on

[0, λ]× R and satisfies

φtt − φss = 0

φ(s, 0) = (0, c(s))

φt(s, 0) = (1, v(s))

φ(0, t) = (t, 0, 0)

φ(λ, t) = (t, 1, 0).

(6.16)

Note that the domain [0, λ]×R ⊆ R1+1 is obviously smoothly conformally equivalent

to sD1+1 = [0, 1] × R ⊆ R1+1 by a rescaling of R1+1. This implies the isothermal

conditions |v(s)± c′(s)|2 = 1 as well as (refer to the C2 compatibility condition (5.15)
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derived in §5.2) the C2 compatibility conditions

d2c

dl2
(0) = d2c

dl2
(λ) = (0, 0) (6.17)

where l denotes arclength parameter along c. We may now state formally the IBVP

that we will consider here.

IBVP 6.9. Given an initial-boundary data (C, V,Γ1,Γ2) with boundary data given

by the pair of parallel lines Γ1(x0) = (x0, 0, 0), Γ2(x0) = (x0, 1, 0) and where C satisfies

the C2 compatibility condition (6.17), find a C2 proper timelike maximal immersion

φ : sD1+1 → R1+2 where sD1+1 is as in (6.15) which is conformal with respect to the

metric ds2 − dt2 on sD1+1 such that s 7→ φ(s, 0) is a monotone reparameterisation of

C, t 7→ φ(0, t) is a monotone reparameterisation of Γ1, t 7→ φ(1, t) is a monotone

reparameterisation of Γ2 and V is tangent to Im(φ) along C.

Definition 6.10. Let (C, V,Γ1,Γ2) be an initial-boundary data with boundary data

given by the pair of parallel lines Γ1(x0) = (x0, 0, 0), Γ2(x0) = (x0, 1, 0) and where C

satisfies the C2 compatibility condition (6.17). Let the initial data be parameterised

isothermally so that C : [0, λ] → R1+2, C(s) = (0, c(s)), V (s) = (1, v(s)) where

〈c′(s), v(s)〉 = 0, |c′(s)|2 + |v(s)|2 = 1 and let φ : [0, λ]×R→ R1+2 denote the unique

C2 solution to (6.16). Then we call φ the evolution of (C, V,Γ1,Γ2) by isothermal

gauge.

It may be seen (refer to the proof of Proposition 5.5 for the ideas) that the evolu-

tion by isothermal gauge φ : [0, λ]×R→ R1+2 of an initial-boundary data (C, V,Γ1,Γ2)

as in Definition 6.10 is a (global) solution to IBVP 6.9 iff φ is an immersion.

Theorem 6.11. Let (C, V,Γ1,Γ2) be an initial-boundary data where the timelike

boundary curves Γ1,Γ2 : R → R1+2 are a pair of parallel straight lines Γ1(x0) =

(x0, 0, 0), Γ2(x0) = (x0, 1, 0) and where the initial data satsifies the C2 compatibility
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conditions (6.17), and let φ : [0, λ] × R → R1+2 be the evolution of (C, V,Γ1,Γ2) by

isothermal gauge (Definition 6.10). Write A±(s) = (1, a±(s)) for the future-directed

null vector fields along C such that

span
{
A+(s), A−(s)

}
= span

{
C ′(s), V (s)

}
.

Then φ is a C2 immersion iff there exist a pair of disjoint open semi-circles Λ+ ⊆ S1

and Λ− ⊆ S1 such that Im(a+) ⊆ Λ+ and Im(a−) ⊆ Λ−. Moreover if φ is a C2

immersion then φ is an embedding, Im(φ) is a C2 graph over some timelike plane,

and Im(φ) is invariant under the action on R1+2 by the group of isometries generated

by the “corkscrew” motion Q(x0, x1, x2) = (x0 +λ,−x1 + 1,−x2) (Q is a combination

of a translation of R1+2 in time (i.e. (x0, x1, x2) 7→ (x0 + λ, x1, x2)) and a spatial

rotation of R1+2 by π radians leaving invariant the line {(x0, 1
2 , 0) : x0 ∈ R} (i.e.

(x0, x1, x2) 7→ (x0,−x1 + 1,−x2)) and so Q satisfies, in particular, the translation

identity Q2(x0, x1, x2) = (x0 + 2λ, x1, x2)).

Proof. To analyse φ we will use the method of images. We introduce a C2 proper

immersion ĉ : R → R2, which extends c periodically, defined as follows. We define ĉ

on [−λ, λ] by

ĉ(s) =


c(s) for s ∈ [0, λ]

−c(−s) for s ∈ [−λ, 0]

and we then extend ĉ to all of R periodically by

ĉ(s± 2λ) = ĉ(s)± (2, 0).
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Next we introduce a vector field v̂ along ĉ. We define v̂ on [−λ, λ] by

v̂(s) =


v(s) for s ∈ [0, λ]

−v(−s) for s ∈ [−λ, 0]

and we then extend v̂ to all of R periodically by

v̂(s) = v̂(s± 2λ).

The pair (ĉ, v̂) thus satisfy

ĉ′(s) = ĉ′(−s) (6.18)

ĉ′(s+ 2λ) = ĉ′(s) (6.19)

v̂(s) = −v̂(−s) (6.20)

v̂(s+ 2λ) = v̂(s) (6.21)

for all s ∈ R. Note that it follows from (6.18)–(6.21) together with the compatibility

conditions (6.13)–(6.17) that the pair (ĉ, v̂) is C2×C1. Define a C2 map φ̂ : R2 → R1+2

by

φ̂(s, t) = (t, γ̂(s, t))

where γ̂ : R2 → R2 satisfies the initial value problem

γ̂tt − γ̂ss = 0

γ̂(s, 0) = ĉ(s)

γ̂t(s, 0) = v̂(s).
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Note that γ̂ is given by the d’Alembert formula

γ̂(s, t) = 1
2

(
ĉ(s+ t) + ĉ(s− t) +

∫ s+t

s−t
v̂(ζ)dζ

)
. (6.22)

From (6.18)–(6.21) and (6.22) we may compute that

γ̂t(0, t) = γ̂t(λ, t) = 0.

Thus by uniqueness of solutions to (6.16) we have

φ(s, t) = φ̂(s, t) (6.23)

for (s, t) ∈ [0, λ]× [0,∞).

Note that from (6.18)–(6.21) and (6.22) it follows that φ is an immersion iff φ̂ is

an immersion. In fact, from (6.18)–(6.21) one may derive the identities

φ̂(s+ 2λ, t) = S
(
φ̂(s, t)

)
(6.24)

φ̂(−s, t) = R
(
φ(s, t)

)
(6.25)

φ̂(s, t+ λ) = φ̂(s+ λ, t) + (λ,−1, 0) = Q
(
φ̂(λ− s, t)

)
(6.26)

for all (s, t) ∈ R2 where S(x0, x1, x2) = (x0, x1 + 2, x2) denotes a translation in

space, R(x0, x1, x2) = (x0,−x1,−x2) denotes a rotation about the x0 axis (leaving

the x1–x2 plane invariant) of π radians, and Q(x0, x1, x2) := R(x0, x1, x2)+(λ, 1, 0) =

(x0 + λ,−x1 + 1,−x2) is a combination of a translation and a rotation such that

Q2(x0, x1, x2) = (x0 + 2λ, x1, x2) is a translation forward in time. Thus Im(φ̂) is

invariant under the action of the group G of isometries on R1+2 which is generated

by S, R and Q and, moreover, if φ̂ is an immersion then the action on R1+2 by any

element of G carries Im(φ) isometrically onto a subset of Im(φ̂).
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Let us now observe that φ̂ is an immersion iff there exist a pair of disjoint open

semi-circles Λ+ ⊆ S1 and Λ− ⊆ S1 such that Im(a+) ⊆ Λ+ and Im(a−) ⊆ Λ−. Indeed,

writing â±(s) = v̂(s) ± ˙̂c(s) we have γ̂s(s, t) = 1
2(â+(s + t) − â−(s − t)) so φ̂ is an

immersion iff â+(ξ) 6= â−(η) for all ξ, η ∈ R which from (6.18)–(6.21) is the case iff

a+(ξ) 6= a−(η)

a+(ξ) 6= −a+(η)

a−(ξ) 6= −a−(η)

i.e. iff Im(a+) and Im(a−) are contained in disjoint semi-circles.

Now let us show that if φ is an immersion then φ is an embedding and Im(φ) is a

C2 graph over some timelike plane. If φ is an immersion then φ̂ is an immersion and

so Im(â+) and Im(â−) are contained in disjoint semi-circles. Since â± : R→ S1 ⊆ R2

are periodic, by Lemma 2.6 there then exists ω ∈ R2 such that

〈γ̂s(s, t), ω〉 = 1
2〈â+(s+ t)− â−(s− t), ω〉 > 0 (6.27)

for all (s, t) ∈ R× [0,∞) and it follows (refer to the proof of Theorem 2.3) that φ̂ is an

embedding and Im(φ̂) is a C2 graph over the timelike plane P = span
{

(1, 0, 0), (0, ω)
}
,

so certainly φ is an embedding and Im(φ) is a graph over P .

Finally, from (6.26) we have φ(s, t) = Q(φ(λ−s, t)) for all (s, t) ∈ [0, λ]×R where

Q(x0, x1, x2) = (x0 +λ,−x1 + 1,−x2), so Im(φ) is invariant under the action on R1+2

by Q. This completes the proof.

Remark 6.12 (An alternative method for small data). If the initial data (C, V ) is

suitably small, then it is possible to prove that the evolution by isothermal gauge

φ : [0, λ] × R → R1+2 is an immersion and Im(φ) is a C2 graph without using the

method of images (i.e. without relying on an explicit representation formula) by using
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energy conservation instead. To see this, let the initial data (C, V ) be parametrized

isothermally so that C(s) = (0, c(s)), V (s) = (1, v(s)) where 〈c′(s), v(s)〉 = 0 and

|c′(s)|2 + |v(s)|2 = 1, and suppose that one has the bound

λ

(∫ λ

0
|c′′(s)|2 + |v′(s)|2ds

)
≤ 1

5 . (6.28)

Note that the left hand side of (6.28) is invariant under the rescaling (x0, x1, x2) 7→

(µx0, µx1, µx2) of R1+2. In the special case v ≡ 0, we have that the parameter s = l

is the arclength of C, λ = L is the length of C, and |c′′(l)| = |k(l)| is the absolute

value of the curvature of C, and the bound (6.28) reads

L

(∫ L

0
|k(l)|2dl

)
≤ 1

5 .

We will now prove using energy conservation that (6.28) implies φ is an immersion and

Im(φ) is a C2 graph. Let φ : [0, λ]× R → R1+2, φ(s, t) = (t, γ(s, t)) be the evolution

of (C, V,Γ1,Γ2) by isothermal gauge as in Definition 6.10, and we are to repeat the

proof that φ is an immersion and Im(φ) is a C2 graph by energy conservation. Note

that φ is an immersion provided |γs(s, t)|2 > 0 for all (s, t) ∈ [0, λ] × R, which since

|γs|2 + |γt|2 = 1 is equivalent to

|γt(s, t)|2 < 1. (6.29)

Since

γt(0, t) = γt(λ, t) = 0 (6.30)
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by Cauchy-Schwarz we have

|γt(s, t)|2 =
(∫ t

0

∂

∂s
|γt(s, t)|ds

)2

≤
(∫ λ

0
|γst(s, t)|ds

)2

≤ λ

(∫ λ

0
|γst(s, t)|2ds

)
.

(6.31)

Defining

E(t) =
∫ λ

0
|γss(s, t)|2 + |γst(s, t)|2ds (6.32)

by (6.30) we have

Ė(t) = 2
∫ λ

0
〈γss(s, t), γsst(s, t)〉+ 〈γst(s, t), γstt(s, t)〉ds

= 2
∫ λ

0

∂

∂s
〈γss(s, t), γst(s, t)〉+ 〈−γsss(s, t) + γstt(s, t), γst(s, t)〉ds

= 2
∫ λ

0

∂

∂s
〈γss(s, t), γst(s, t)〉ds

= 2 (〈γss(λ, t), γst(λ, t)〉 − 〈γss(0, t), γst(0, t)〉)

= 2 (〈γtt(λ, t), γst(λ, t)〉 − 〈γtt(0, t), γst(0, t)〉)

= 0

(6.33)

so

E(t) = E(0) (6.34)
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for all t ∈ R.2 Putting together (6.31), (6.34) and (6.28) gives

|γt(s, t)|2 ≤ λE(t) = λE(0) ≤ 1
5 . (6.35)

So we have established (6.29) which proves that φ is an immersion. Now we will show

that Im(φ) is a C2 graph. Writing

U(s, t) = γs(s, t)
|γs(s, t)|

(6.36)

for the spatial unit tangent along φ, we will show that Im(U) ⊆ S1 is contained in an

open semi-circle, which will imply that Im(φ) is a C2 graph. To show this, observe

that by (6.35) we have

|γs(s, t)|2 = 1− |γt(s, t)|2 ≥
4
5

so

∣∣∣∣∣∂U∂s (s, t)
∣∣∣∣∣ =

∣∣∣∣∣ γss(s, t)|γs(s, t)|
− 〈γss(s, t), γs(s, t)〉

|γs(s, t)|3
γs(s, t)

∣∣∣∣∣ ≤ √5|γss(s, t)|. (6.37)

Since γt(0, t) = 0 implies

U(0, t) = U(0, 0)

2In fact a few words are needed to justify the computation (6.33). Since γ is only C2, a-priori
we do not have the regularity required to carry out the computation (6.33), and (6.33) should only
be considered formal. Nonetheless, the desired energy conservation (6.34) holds for C2 solutions to
the wave equation as may be checked, for example, directly from a d’Alembert formula.
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for all t ∈ [0,∞), by Cauchy-Schwarz, (6.37), (6.34) and (6.28) we arrive at

|U(s, t)− U(0, 0)|2 = |U(s, t)− U(0, t)|2 =
∣∣∣∣∣
∫ s

0

∂U

∂s
(s, t)ds

∣∣∣∣∣
2

≤ λ

∫ λ

0

∣∣∣∣∣∂U∂s (s, t)
∣∣∣∣∣
2

ds

 ≤ 5λ
(∫ λ

0
|γss(s, t)|2ds

)

≤ 5λE(t) = 5λE(0) ≤ 1

(6.38)

for all (s, t) ∈ [0, λ] × [0,∞), which implies that Im(U) is contained in an open

semi-circle as claimed.
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Chapter 7

Future questions

We have now given the proofs of all of the theorems in this thesis, and so we have

come to the end of our story. In this final chapter, we will outline (in no particular

order) some interesting questions for the future.

It follows from Theorem 2.3 that if φ : R2 → R1+2 is a smooth proper timelike

maximal immersion and N : R2 → S1+1 is the (spacelike) unit normal along φ, then

for every compact subsetK ⊆ R2, N(K) is contained in an open hemi-hyperboloid. In

particular, it follows that Im(N) is contained in a closed hemi-hyperboloid. Example

2.9 shows a situation where the closure of Im(N) in S1+1 intersects both connected

components of the boundary of a closed hemi-hyperboloid, but we don’t have any

examples where Im(N) is dense in a closed hemi-hyperboloid.

Problem 7.1 (Bounds on the unit normal). For an arbitrary smooth properly im-

mersed timelike maximal surface in R1+2 with spacelike unit normal N , what (in some

appropriate sense) is the sharpest possible bound on the size of Im(N)?

Next, a natural question concerns the lowest regularity required for Theorem 2.3.

Specifically, what is the smallest k ≥ 1 (including non-integers) such that every Ck

proper timelike maximal immersion φ : R2 → R1+2 (see Appendix B for definition)
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is an embedding whose image is a Ck graph over compact subsets? An examination

of our proof of Theorem 2.3 shows that this is ultimately related to the following

problem.

Problem 7.2 (The conformal Bernstein problem in low regularity). What is the

smallest k ≥ 1 (including non-integers) such that every Ck properly immersed timelike

maximal surface in R1+2 is C1 conformally equivalent to the Minkowski plane R1+1?

The statement “there exists no smooth proper timelike maximal immersion φ : S1×

R → M1+2” is true if M1+2 = R1+2 (by [59, Theorem 1.1]) but is false for a general

globally hyperbolic Lorentzian manifoldM1+2. Indeed, ifM1+2 = R×Σ2 is equipped

with the static metric −dt2 + gΣ2 where gΣ2 is a complete Riemannian metric on the

surface Σ2 and if c : S1 → Σ2 is a closed geodesic, then the immersion φ : S1 × R →

R×Σ2 defined by φ(s, t) = (t, c(s)) gives a smooth proper timelike maximal immersion

(the Cauchy evolution of the initial data set (γ, ∂t)). In the case that Σ2 = S2 with

the round metric gS2 and c : S1 → Σ2 traces a great circle, it may be shown that

the resulting timelike maximal surface in R× S2 is unstable, in the sense that there

exist smooth initial data sets (C, V ) lying arbitrarily close to the initial data (c, ∂t)

for which the Cauchy evolution of (C, V ) to a timelike maximal surface in R × S2

becomes singular in finite time. It seems natural to interpret this as a consequence

of the fact that the great circles are unstable critical points for the length functional

on S2.

Problem 7.3 (Stability of static timelike maximal surfaces in static spacetimes). If

c : S1 → Σ2 is a closed geodesic with respect to a complete Riemannian metric gΣ2

on Σ2 which is a strict local minimizer of the length functional, is the corresponding

Cauchy evolution for a static timelike maximal surface in the static spacetime (R ×

Σ2,−dt2 + gΣ2) stable with respect to small perturbations of the initial data (c, ∂t)?
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The only case of the IBVP for a pair of timelike boundary curves (see the first

paragraph of §6.2 for precise statement of this IBVP) that we considered in this thesis

was the case of a pair of parallel timelike lines (Theorem 6.11) as this is the only case

in which we can obtain an explicit global representation formula for conformally pa-

rameterised solutions. For the general case of this IBVP, the representation formulas

one obtains by conformal methods seem to become far to complicated to analyse and

conformal methods are possibly not the way forward here. One case which is of inter-

est, however, which might be partially tractable by conformal methods, is the case of

a pair of non-parallel timelike boundary lines. Note that in this case one at least has

an explicit representation formula for the solution locally (see §5.7 and exploit finite

speed of propagation for wave equations).

Problem 7.4 (IBVP for non-parallel lines). For the IBVP for a timelike maximal

surface in R1+2 with timelike boundary consisting of a pair of non-parallel and non-

intersecting timelike straight lines, do there exist any global solutions? If so, what are

their stability properties?

Recall that, at least generically, the method of isothermal gauge does not give a

good notion of solution after singularity has formed (it forms a swallowtail which is

not even a C1 surface). On the other hand, we know that, for generic smooth initial

data, the limit curve at the first time of singularity will be C1 (and the surface will

become null at this point). This begs the question as to whether, in the generic case,

there might exist (even locally) an extension of the surface beyond the first time of

singularity to a C1 causal surface which is a timelike maximal surface away from some

singular set.

Problem 7.5 (C1 causal extendibility). Suppose that one is given a C1 causal im-

mersion φ : Ωε → R1+2 where Ωε := (−ε, ε)× (−ε, 0] of the form φ(s, t) = (t, γ(s, t))

which is a smooth timelike maximal immersion on Ωε \ (0, 0) and which is null at
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the point (0, 0). By redefining ε > 0 to be smaller if necessary (i.e. by redefining the

domain of φ to be the subset Ωε′ ⊂ Ωε for some 0 < ε′ < ε if necessary), can one

construct an extension φ̃ : U → R1+2 of φ to an open subset U ⊆ R2 containing Ωε

which is a C1 causal immersion and which is a timelike maximal immersion on U \K

where K ⊆ U is a subset of Hausdorff dimension ≤ 1?

Many of the methods that we have employed in this thesis (specifically, the confor-

mal methods) will not in general be applicable to timelike maximal surfaces in higher

dimensions. Nonetheless, there are many natural and interesting questions in higher

dimensions. Theorem 2.3 will not generalize to higher dimensions, in the sense that

there exist smooth proper timelike maximal immersions φ : R3 → R1+3 which are not

embeddings (indeed, for an example, let γ : R2 → R3 be a smooth parameterisation of

Enneper’s self-intersecting minimal surface (see Figure 1.1) and define φ : R3 → R1+3

by φ(x, t) = (t, γ(x)), then φ is a smooth proper self-intersecting timelike maximal

immersion1). On the other hand, Wong [75] has observed that there are currently

no counter-examples to the statement “for any compact manifold Mn−1 there exists

no smooth proper timelike maximal immersion φ : Mn−1 ×R→ R1+n” and described

this statement as “tempting” to conjecture. One small step towards such a conjecture

might be to understand in better detail the stability of “shrinking sphere” solutions

φ : Sn−1× (−T∗, T∗)→ R1+n which are higher dimensional analogues of the shrinking

circle solution of Example 1.10. A related problem is the stability of the identity wave

map between two spheres, which is defined by φ : Sm × R → Sm; φ(p, t) = p. For

the case m ≥ 3, one expects instability of this wave map, since the identity harmonic

map Id : Sm → Sm is unstable. For the case m = 1, the wave map equation may be

solved explicitely, and it is an interesting exercise to observe that the identity wave

map is stable in the sense that small perturbations of the identity initial data lead
1note that the stability of such self-intersecting timelike maximal surfaces, on the other hand,

may be another matter
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to a globally regular wave map which stays close to some member of the 1-parameter

family of rotating solutions {φβ : S1×R→ S1}β∈R given by φβ(eiθ, t) = ei(θ+βt). This

leaves open an interesting borderline case when m = 2.

Problem 7.6 (A problem concerning wave maps). What are the stability properties

of the identity wave map φ : S2 × R→ S2 defined by φ(p, t) = p?

Theorem 3.1 gives us a description of singularity formation in terms of a spatial

curvature blow-up for (1+1)-dimensional timelike maximal surfaces in R1+2, with a

curvature blow-up in L1
timeL

∞
space-norm. Recall that in Example 3.3 we computed the

rate of curvature blow-up in more detail for the special case of the shrinking circle,

and we observed that there is also blow-up in LptimeLqspace norm whenever p, q ∈ (0,∞)

are Hölder conjugate i.e. 1
p

+ 1
q

= 1.

Problem 7.7 (Curvature blow-up in Hölder conjugate norms). Does singularity for-

mation for timelike maximal surfaces in R1+2 always involve a blow-up of spatial

curvature in LptimeLqspace-norm for all Hölder conjugate p, q ∈ (0,∞) (i.e. 1
p

+ 1
q

= 1)?

More generally/ambitiously, there is still lots to be understood regarding singu-

larity formations in higher dimensions and codimensions

Problem 7.8 (Blow-up in higher dimensions). What are the mechanisms of cur-

vature blow-up during singularity formation for timelike maximal surfaces in higher

dimensions and codimensions?

Finally, often in this thesis we have made use of the word “generic”, without

providing any rigorous definition. There appears to be some scope for trying to make

precise what exactly is meant by generic in our context, and a better understanding

of the term might give insights into problems involving timelike maximal surfaces in

higher dimensions. Let us discuss just one instance in which the word generic occurs
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in the context of timelike maximal surfaces. Recall that it was proved by Jerrard,

Novaga & Orlandi [42] that for generic smooth initial data (C, V ) where C : S1 → R4,

the evolution of (C, V ) by isothermal gauge yields a smooth proper timelike maximal

immersion φ : S1 × R → R1+4. The authors in [42] showed that this result may

effectively be deduced from the following statement:

“given a pair of smooth curves γ1 : S1 → S3 and γ2 : S1 → S3,

generically, γ1 and γ2 will not intersect”.
(?)

Visualizing S3 as the one-point compactification of R3, and the statement (?) may

seem intuitively obvious. But it is an interesting problem to try and make (?) precise.

In [42], the authors prove that the space of pairs of closed curves in S3 may be

equipped with a natural topology with respect to which the subset K of pairs of

closed curves which intersect forms a closed subset of empty interior. But there

seems to be room for more to be said (indeed, think of the fat Cantor set in the unit

interval [0, 1], which is also a closed subset of empty interior). It would be interesting

to understand what are the possible measures on the space of curves with respect to

which K has measure zero.

Problem 7.9 (Making genericity precise). What is a good measure on the space of

pairs of closed curves in S3 with respect to which the statement (?) may be made

precise?
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Appendix A

Roadmap (structure of the thesis)

Structure of Chapter 1. Chapter 1 contains some context to the topic of timelike

maximal surfaces. This starts in §1.1.1 with a rapid history of minimal surfaces in R3,

which are the better-known cousins of timelike maximal surfaces in R1+2. In §1.1.2

we briefly discuss Einstein’s ‘beautiful thought’—since an important motivation for

Lorentzian geometry comes from the theory of relativity—and in §1.1.3 we introduce

timelike maximal surfaces alongside some relevant physical theories. In §1.2.1 an

appropriate notion of global solution is defined and we introduce the initial value

problem. In §1.2.3 we review the method of isothermal gauge, which is a method in

a sense analogous to the Weierstrass representation formula for minimal surfaces in

R3, and we see some well-known examples of timelike maximal surfaces: the timelike

plane and the shrinking circle. In §1.3.1 we review some singularity results for time-

like maximal surfaces in R1+2 and in §1.3.2–1.3.3 we discuss some further relevant

literature including stability results in all dimensions and codimensions. In §1.4 we

state the main results of this thesis.

Structure of Chapters 2–4. In §2.1 we derive a smooth conformal equivalence

between the induced metric on an arbitrary smooth properly immersed timelike max-

imal surface and the Minkowski plane R1+1 (Lemma 2.2). In §2.2 we prove Theorem
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2.3 (on embeddedness of timelike maximal surfaces) and in §2.3 we see examples of

both graphical and non-graphical timelike maximal surfaces. The latter examples

show that the restriction to compact subsets in Theorem 2.3 cannot be relaxed in

general. In §3.1 we prove Theorem 3.1 (on singularity formation) and in §3.2 we

discuss in a bit more detail the rate of curvature blow-up for the special case of the

shrinking circle (Example 3.3 and Remarks 3.4–3.5). Chapter 4 is devoted to anal-

ysis in isothermal gauge. In §4.1 we define the evolution by isothermal gauge for a

C1 × C0 initial data and gather some basic results. In §4.2 we further analyse the

solution by isothermal gauge. In particular we prove a localized singularity statement

to complement Theorem 2.3 (Proposition 4.5) and we observe local and global exis-

tence results which are notable in that they require no decay on the initial data at

infinity (Corollary 4.13 and Remark 4.10). In §4.3 we see examples illustrating some

non-generic singular behaviours, including C1 properly embedded surfaces containing

non-graphical compact sets which are smooth timelike maximal surfaces away from

a pair of null half-lines (Example 4.14) and C1 properly embedded graphical, but

not C1 graphical, periodic surfaces which are smooth timelike maximal surfaces away

from a discrete lattice of null points (Example 4.15). In §4.4 we prove Theorem 4.16

(on global C1 inextendibility in isothermal gauge) and we see some more examples

of possible non-generic singular behaviours (Examples 4.19 and 4.20). In §4.5 we

observe a non-generic example in which singularity formation is not by collapse but

for which the limit curve at the first singularity is not C1.

Structure of Chapters 5 & 6. In Chapters 5 & 6 we move on to IBVPs

for timelike maximal surfaces in R1+2. Chapter 5 treats in detail the situation for

a single prescribed timelike boundary curve. In §5.1 we give the precise statement

of this IBVP and we introduce natural C2 compatibility conditions on the initial-

boundary data which are necessary for the existence of a C2 solution to the problem.
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In §5.2 we make a choice of conformal structure for the solution of the IBVP (see

Figure 5.2) and we see that this imposes (unnatural) C2 compatibility conditions

on the data ‘at the corner’. In §5.3 we set about solving the IBVP. To be precise,

we define a notion of evolution by isothermal gauge (i.e. Weierstrass-type formula,

see Definition 5.4) and we prove that this gives a C2 solution to the IBVP modulo

possible singular points (Proposition 5.5). In §5.4 we analyse the singular points, and

in particular we write down a condition which implies that singular points correspond

to curvature blow-ups (Lemma 5.8). In §5.5 is a quick example exhibiting solutions

of the IBVP with each of the two distinct structures of null infinity of our conformal

domain. In §5.6 we give a sufficient condition on the initial-boundary data for the

singular set to be non-empty (Proposition 5.12) and so we arrive at a non-empty

open set of initial-boundary data for which we have global solutions to the IBVP (our

choice of the conformal structure of null infinity for the solution thus turns out to be

justified a postiori). In Remark 5.14 we loosely discuss the “size” of this open set and

we note, in particular, that our results imply a C1 stability result for the quadrant

of a timelike plane with respect to this IBVP (Remark 5.13). In §5.7 we treat the

special case that the timelike boundary is a half-line. In this case our equations are

integrable, we obtain an explicit expression for the evolution by isothermal gauge, and

we can completely classify the initial data sets in terms of singularity vs. no singularity

(Theorem 5.15). We then illustrate in this special case a situation in which singularity

forms only outside of the domain of dependence of the initial curve i.e. singularity

forms due to the ‘reflection of waves off the boundary’ (Example 5.17). In Chapter

6, as an application of the results of Chapter 5, we treat two further IBVPs with

timelike boundaries consisting respectively of: (i) a single timelike plane, and (ii) a

pair of parallel timelike lines (with general initial data considered in both cases). The

case (i) is treated in §6.1 where a method is developed which could in principle be
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applied to treat any timelike boundary surface. We again derive C2 compatibility

conditions here which follow from the choice of conformal structure of the corner, but

we observe that only one type of null infinity is possible in this setting (Remark 6.2).

We see that our equations are integrable in the case of the timelike plane and we can

classify the space of solutions by isothermal gauge (Theorem 6.6). The case (ii) is

treated in §6.2 by the method of images, yielding an explicit representation formula

with which we classify the space of solutions by isothermal gauge (Theorem 6.11),

and also (with less optimal results) by energy methods (Remark 6.12).
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Appendix B

Notation & terminology

We work throughout the thesis in MinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowskiMinkowski spacespacespacespacespacespacespacespacespacespacespacespacespacespacespacespacespace R1+2. Let (x0, x1, x2) denote

coordinates on R1+2 such that the Minkowski metric is

η = −(dx0)2 + (dx1)2 + (dx2)2.

We call such coordinates (x0, x1, x2) inertialinertialinertialinertialinertialinertialinertialinertialinertialinertialinertialinertialinertialinertialinertialinertialinertial.

For V ∈ TpR1+2 we write

V = (V 0, V 1, V 2) = (V 0, v1, v2) = (V 0, v),

i.e. we always use an uppercase letter for a vector and a lowercase letter for the spatial

component of a vector (with respect to some fixed inertial coordinates on R1+2).

For V,W ∈ TpR1+2 it is convenient to introduce the shorthand

⟪V,W⟫ = −V 0W 0 + v1w1 + v2w2 = −V 0W 0 + 〈v, w〉

‖V ‖2 = ⟪V, V ⟫ = −(V 0)2 + |v|2
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for the MinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskianMinkowskian innerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinner productproductproductproductproductproductproductproductproductproductproductproductproductproductproductproductproduct, where we make the standard abuse of notation

in identifying TpR1+2 = R1+2 for all p ∈ R1+2. We reserve the notation 〈V,W 〉 =∑
i V

iW i, and |V |2 = 〈V, V 〉 for the usual EuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclideanEuclidean innerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinnerinner productproductproductproductproductproductproductproductproductproductproductproductproductproductproductproductproduct.

A vector V ∈ TpR1+2 is timeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimelike if ‖V ‖2 < 0, spacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelike if ‖V ‖2 > 0, nullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnull if

‖V ‖2 = 0 and causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal if it is either timelike or null. Note that by this terminology a

timelike or spacelike vector field is necessarily nowhere-vanishing. A timelike or null

vector V is called future-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directedfuture-directed (resp. past-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directedpast-directed) if V 0 > 0 (resp. V 0 < 0).

Let Ω ⊆ R2 be an open subset and φ : Ω → R1+2 be a C1 immersion. Let (s, t)

denote coordinates on Ω ⊆ R2 and write φα = xα ◦φ for the expression of φ in inertial

coordinates. The inducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinduced metricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetric g = φ∗η (or firstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirst fundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamental formformformformformformformformformformformformformformformformform) is the bilinear

form

g(s, t) = E(s, t)ds2 + 2F (s, t)dsdt+G(s, t)dt2

where

E(s, t) = ‖φs(s, t)‖2, F (s, t) = ⟪φs(s, t), φt(s, t)⟫, G(s, t) = ‖φt(s, t)‖2.

For each q ∈ Ω we say that φ is timeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimelike at q if det(g(q)) < 0, φ is nullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnull at q if

det(g(q)) = 0, φ is spacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelikespacelike at q if det(g(q)) > 0, and φ is causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal at q if φ is either

timelike or null at q. We say that φ is timeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimelike (resp. causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal) if it is timelike (resp.

causal) at every point q ∈ Ω. In the case that φ is timelike at q there exists a choice

of unit normal vector N(q) (which is spacelike) and a direct sum decomposition of

the tangent space which is orthogonal with respect to η = ⟪·, ·⟫

Tφ(q)R1+2 = span{N(q)} ⊕ Im(dφq).
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Thus if φ : Ω → R1+2 is a C2 timelike immersion then one may define the secondsecondsecondsecondsecondsecondsecondsecondsecondsecondsecondsecondsecondsecondsecondsecondsecond

fundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamentalfundamental formformformformformformformformformformformformformformformformform

II(s, t) = e(s, t)ds2 + 2f(s, t)dsdt+ g(s, t)dt2

and meanmeanmeanmeanmeanmeanmeanmeanmeanmeanmeanmeanmeanmeanmeanmeanmean curvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvaturecurvature in the same way as in the familiar Euclidean setting, see e.g. [70,

Chap. 7].

On any smooth properly immersed timelike surface Σ ⊆ R1+2 there exist a pair of

smooth future-directed null tangent vector fields which provide a global frame for the

tangent bundle (i.e. they span the tangent space at every point). We may (arbitrarily)

assign the names incomingincomingincomingincomingincomingincomingincomingincomingincomingincomingincomingincomingincomingincomingincomingincomingincoming and outgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoingoutgoing to these vector fields respectively. Locally

about any point on the surface, the integral curves of the incoming and outgoing

null vector fields may be chosen to serve as coordinate lines. We call a C1 local

system of coordinates (z+, z−) on a C1 timelike surface Σ nullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnull coordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinates if ∂
∂z±

are

future-directed null vector fields on Σ. If (z+, z−) are null coordinates then we call

the coordinates (s, t) defined by s = z+−z−, t = z+ +z− isothermalisothermalisothermalisothermalisothermalisothermalisothermalisothermalisothermalisothermalisothermalisothermalisothermalisothermalisothermalisothermalisothermal coordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinatescoordinates. The

induced metric in null or isothermal coordinates reads

g(z+, z−) = 2F (z+, z−)dz+dz− or g(s, t) = E(s, t)(ds2 − dt2).

If φ : Ω→ R1+2 is a C1 timelike immersion then for every compact subset U ⊆ Ω

the areaareaareaareaareaareaareaareaareaareaareaareaareaareaareaareaarea of φ(U) is defined as

A [φ;U ] =
∫
U

√
| det(g(s, t))|dsdt.

The area of φ(U) is independent of the choice of coordinates (s, t) on U . The Euler-
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Lagrange equations associated to the area functional A are

1√
| det g|

∂i

(√
| det g|gij∂jφα

)
= 0 (B.1)

having adopted the summation convention. We call (B.1) the timelike maximal sur-

face equation. We say that a C1 timelike immersion φ : Ω → R1+2 is a timeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimelike

maximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximal immersionimmersionimmersionimmersionimmersionimmersionimmersionimmersionimmersionimmersionimmersionimmersionimmersionimmersionimmersionimmersionimmersion if it satisfies (B.1) with respect to some coordinate system in

the weak sense. We refer to the image of a timelike maximal immersion as a timeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimeliketimelike

maximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximalmaximal surfacesurfacesurfacesurfacesurfacesurfacesurfacesurfacesurfacesurfacesurfacesurfacesurfacesurfacesurfacesurfacesurface. When φ is a C2 timelike immersion, the equation (B.1) is equivalent

to H(φ) = 0 where H denotes the mean-curvature vector.

The equation (B.1) is independent of the choice of coordinates in that if φ : Ω→

R1+2 is a C2 solution to (B.1) and ψ : Ω′ → Ω is a C2 diffeomorphism, then φ′ =

φ ◦ ψ : Ω′ → R1+2 is also a C2 solution to (B.1). The equation (B.1) is also invariant

under the rescalings (x0, x1, x2) 7→ (λx0, λx1, λx2) of R1+2 as well as the isometries

of R1+2. For a C1 timelike immersion, with respect to a system of null/isothermal

coordinates the equation (B.1) reduces to the wavewavewavewavewavewavewavewavewavewavewavewavewavewavewavewavewave equationequationequationequationequationequationequationequationequationequationequationequationequationequationequationequationequation

φz+z− = φtt − φss = 0.
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