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Rough plan of talk:

1. A (Very) Brief Tour of Minimal Surfaces in |

2. Review of Differential Geometry in Rt & the Cauchy Problem
for Timelike Maximal(/Minimal) Surfaces.

3. Some new results:

Theorem 1 [P. 2019]: Every smooth properly immersed timelike
1+2

. maximal surfacein | is embedded, and is a smooth graph over |
| boundedsubsets. 0000000000 |

Theorem 2 [P. 2019]: Singularity formation for a TMS always
_ involves a curvature blow-up, with blow-up inan L L sense. |
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Part I: Minimal surfaces in R’

* In1760 Lagrange wrote down the equation

du du

1.1) — L |
" Ox ' Oy " Ox ' Oy

describing a surface 2 = {(x, y, u(x,y))} C I 3 which extremises the area
functional (a minimal surface).

* Minimal surfaces describe soap films :)

» Lagrange didn’t write down solutions to (1.1) apart from the plane (D*u = 0)
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In 1776 Meusnier identified minimal surfaces as surfaces of vanishing
mean curvature, and was able to give the first non-trivial examples:

Images courtesy of

M. Weber. 1. The catenoid
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Over the last 250 years many more exciting examples of

minimal surfaces in R> have been found...

Images courtesy of E. W.
Weisstein

3. Costa’s surface e @ MathWorld-A
Wolfram web resource
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And many beautiful theorems have been proved! (“Rigidity” of the plane)

Theorem (Bernstein 1915):

Any smooth complete minimal surface ¥ in R which is a graph (i.e.

2 = {(x,y,u(x,y))}) must be a plane.

(I.e. there are no non-trivial solutions #: R“ — R to (2.1))

Theorem (Fujimoto 1988, building upon Osserman 1959 & others):

If ¥ is a complete minimal surface in R? and N: ¥ — S?is its unit
normal vector, then either:

1. Image(/V) is a single point (i.e. 2 is a plane), or

2. Image(N) omits at most 4 points in S~.
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Part II: Minimal surfaces in R 1>

For vectors v & w in Minkowski space |
Minkowskian “inner product” is -

O 2. .2

m(v,w) = — v’ + viw! 4+ 1%y
and we say
1. vis timelike if m(v,v) < 0O

2. v is spacelike if m(v,v) > 0O

3. vis null it m(v,v) = 0. ‘
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Suppose that U~ is a surface and

¢: U?> - R is a smooth immersion. We
define

gi(p) = m(0h, 0,p)

and say ¢ is timelike if det(g(p)) < O for all
p € U? (i.e. g is Lorentzian).

< there exist a pair of nowhere-zero,

linearly independent vector fields NV,
on U? such that dep(N,. ) are null.
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Morse Lemma (timelike surface=flow of curves): Suppose U? is connected and ¢p: U?* — R!*?
is a smooth timelike immersion which is proper (i.e. the preimage of a compact set is
compact). Then there exists a smooth diffeomorphism of the form

i) w:S'XR - U? or i) w: R? - U?

such that, after diffeomorphism (¢ — @ o ), one has ¢(s, 1) = (¢, (s, 1)) € R+

In other words, properly immersed
timelike surfaces come in 2 flavours:

1. cylinders (spatially compact), or

2. planes (spatially non-compact)
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142 is maximal if

A smooth timelike immersion ¢: U? — |

H(9) = —=0i (Vlslg"00) =0

For a surface parameterised as a graph ¢(x, 1) = (¢, x, u(x, t)) this reads

au 0u

6'1' \/1 . Ou E u \/1 - Ou 2 u

And for a surface parameterised in isothermal coordinates (s, 7) (i.e.
g(s, 1) = p(s, t)(—dt2 + dsz) ) it reads: 32¢ 82gb
ot  0s?

In any case, we have a wave equation! The natural problem is thus the Cauchy problem.

=0 [Born-Infeld equation]

=0
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b
-

Cauchy problem:
Given a smooth immersed curve C in the
plane {t = 0} and a smooth timelike vector

field V along C, find a smooth immersed

timelike maximal surface 2 which intersects
C and is tangent to V along C.

- A global solution is a proper immersion.
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Example (The Shrinking Circle):
Let C(s) = (0, cos s, sins) and V(s) = (1,0,0).
A Cauchy evolution of (C, V) is

@(s,t) = (,COStCOS S, COSTSINS).

1.0

0.5 F

—0.5F

—-1.0

E. Adam Paxton WSl 652 UNIVERSITY OF

> e |
LLV | MEA o

Predictability of Weather & Climate, University of Oxford | edmund.paxton@physics.ox.ac.uk



Example (The Shrinking Circle):
Let C(s) = (0, cos s, sins) and V(s) = (1,0,0).
A Cauchy evolution of (C, V) is

@(s,t) = (,COStCOS S, COSTSINS).

1.0

0.5

—0.5F

—1.0

E. Adam Paxton WSl 652 UNIVERSITY OF

> e |
LLV | MEA o

Predictability of Weather & Climate, University of Oxford | edmund.paxton@physics.ox.ac.uk



Example (The Shrinking Circle):
Let C(s) = (0, cos s, sins) and V(s) = (1,0,0).
A Cauchy evolution of (C, V) is

@(s,t) = (,COStCOS S, COSTSINS).

1.0

0.5

—0.5F

—1.0

E. Adam Paxton WSl 652 UNIVERSITY OF

> e |
LLV | MEA o

Predictability of Weather & Climate, University of Oxford | edmund.paxton@physics.ox.ac.uk



Example (The Shrinking Circle):
Let C(s) = (0, cos s, sins) and V(s) = (1,0,0).
A Cauchy evolution of (C, V) is

@(s,t) = (,COStCOS S, COSTSINS).

1.0

0.5

—0.5F

—1.0

E. Adam Paxton WSl 652 UNIVERSITY OF

> e |
LLV | MEA o

Predictability of Weather & Climate, University of Oxford | edmund.paxton@physics.ox.ac.uk



Example (The Shrinking Circle):

Let C(s) = (0, cos s, sins) and V(s) = (1,0,0). [,
A Cauchy evolution of (C, V) is T2
: | T 1
@(s,t) = (,COStCOS S, COSTSINS). -
-1
-
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Example (The Shrinking Circle):
Let C(s) = (0, cos s, sins) and V(s) = (1,0,0).

A Cauchy evolution of (C, V) is T 2
° I 1
@(s,t) = (,COStCOS S, COSTSINS). -
T 0 E‘B
-1
A flow of round
circles which
collapse to apoint ="
in finite time.

E. Adam Paxton a3 UNIVERSITY OF

Predictability of Weather & Climate, University of Oxford | edmund.paxton@physics.ox.ac.uk 7 ) N 27 OXFORD




Where did this example come from?

[t is an example of the method of isothermal gauge

] ] ] TS
(i.e. Weierstrass representation formula).
- 9
. This is a general trick for cooking up solutions to L
WS

0*p  0°¢ (44 045 @(/5 44
=0, m ] =0
ot ot ot as ot as

which gives a TMS provided ¢ is an immersion.
-1t is a trick to cook up singular TMSs

-In general, it gives only local solutions to the
Cauchy problem.
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The shrinking circle is a special case of:

Theorem [Belletini, Hoppe, Novaga & Orlandi 2010]: '

Let C c {x" = 0} beasmooth, closed, convex, centrally-
'symmetric curve, and let V = 0,0 = (1,0,0). Then the
|Cauchy evolution of (C, V) to a TMS consists of a family of

smooth, closed, convex curves which shrink to a point
\singularity in finite time.

0.5 F

Note: This is not the . .|
generic singularity
formation...

—0.5F

—1.0
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- Generically, for singular TMSs h ' '
constructed by isothermal gauge, o1} :
singularity formation is a swallowtail. (L

—0.2 | “‘mﬁi _

- At the onset of singularity, the limit O
curve is C1!7°, See [Eggers & o :
Hoppe 2009] or [Nguyen & Tian ol _
2013]).

—0.5 ' ' | . |

-'TMS:s like to form singularities.. ~04 0.2 0 0.2 04

L

'Theorem (Pron’ko, Razumov & Solov'ev 1983, |

, . -l.e. No global solutions in the
Hoppe 1995, Nguyen & Tian 2013):

spatially-compact case.

| There exists no smooth propetlf ilzmehke maximal .What about the spatially non-

immersion ¢ S 'XR - | - | compact case?
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: Theorem 1 [P. 2019]:

Let p: R* — R be a smooth proper timelike maximal immersion. Then:

1. ¢ is an embedding (i.e. no self-intersections).

142

2. For every compact subset K C Im(¢), there is a timelike plane P C | _
_suchthatKisasmoothgraphoverP. o

(An ‘upside-down’ Bernstein’s theorem)

.Corollary 1: If £ C R is a smooth properly-immersed TMS, and N: £ — St is
its (spacelike) unit normal, then Im(/V) is contained in a closed hemi-hyperboloid.

.Corollary 2: It C C {t = 0} is any self-intersecting curve and V any timelike vector

field along C, then the Cauchy evolution of (C, V) to a TMS must form a finite-time
singularity (in either the future or the past).
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Theorem 1 [P,

Let p: R* — R be a smooth proper timelike maximal immersion. Then:

1. ¢ is an embedding (i.e. no self-intersections).

142

2. For every compact subset K C Im(¢), there is a timelike plane P C | _
__suchthatKisasmoothgraphover P. o

Note 1: There exist many smooth properly immersed graphical TMSs.
Take

*  P(s, 1) = (t% (c(s+ 1) + c(s — t)))

where c(s) = (x!(s), u(x'(s))) is a smooth proper graph parameterised
by arclength.
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Theorem 1 [P. 2019]:

Let p: R? — R be a smooth proper timelike maximal immersion. Then:

1. ¢ is an embedding (i.e. no self-intersections).

2. For every compact subset K C Im(¢), there is a timelike plane P C |
__ suchthatKisasmoothgraphover .

2
Note 1: There ¢xist many smooth properly immersed graphical TMSs. * 7

Take

*  P(s, 1) = (t% (c(s+ 1) + c(s — t)))

where c(s) = (xl(s), u(xl(s))) is a smooth proper graph parameterised C
by arclength. :
Note 2: This restriction cannot be relaxed. Take X with ¢ like this: : x
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[
Sketch proof of Theorem 1: Let ¢: R* - R!*?bea !
smooth proper timelike maximal immersion.

Step 1: Construct a coordinate change y: R? — R?
such that, in the new coordinates (7_,7_),

N. =
- 0N+

are null (i.e global isothermal coords).

Existence of y proved by T. Milnor, 1985 (non-trivial!)
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Sketch proof of Theorem 1: Let ¢: R* - R!*?bea
smooth proper timelike maximal immersion.

Step 1: Construct a coordinate change y: R? — R?
such that, in the new coordinates (7_,7_),

N_a
i_aﬂi

are null (i.e global isothermal coords).

Existence of y proved by T. Milnor, 1985 (non-trivial!)

Step 2: Show that Step 1implies NV, (p) and N_(g)
are linearly independent for all p, g € R>.
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Sketch proof of Theorem 1: Let ¢p: R? - R!*?bea
smooth proper timelike maximal immersion.

Step 1: Construct a coordinate change y: R? — R?
such that, in the new coordinates (77_,7_),

N. =
- 0N+

are null (i.e global isothermal coords).

Existence of y proved by T. Milnor, 1985 (non-trivial!)

Step 2: Show that Step 1implies NV, (p) and N_(g)
are linearly independent for all p, g € R

0.y(s, 1)

| Oy (s, 1) |
for the spatial unit tangent along ¢. Show that Step 2 implies Im(e) is a strict subset of a

Step 3: Changing coordinates (WLOG) as ¢ (s, t) = (¢, y(s, 1)), write e(s, f) :=

closed semi-circle. Theorem 1 follows. B
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-Recall that Theorem 1 implies:

Corollary 2: It C C {t = 0} is any self-intersecting curve and V any

timelike vector field along C, then the Cauchy evolution of (C, V) to a
TMS must form a finite-time singularity (in either the future or the past).

- But this does not reveal anything about the nature of singularity formation.

- A-priori, there are two things that could happen at a singularity:
1. The surface fails to remain timelike.

2. The surface fails to remain smooth.

- In fact (see e.g. [Jerrard, Novaga & Orlandi 2014] or [P. 2019]) case 1 always occurs.
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At the onset of a singularity ( = t.),
the evolution can be parameterised as:

¢: [_59 5] X [t* — &, t*] — R1+29

P(s, 1) = (1, y(s, 1))

dy oy . Oy
—(0,1)),—(0,0))) =0, Im|—@©O,n))| =1
<az( ) as( ) tm‘dt( ) |

Here ¢ is a smooth timelike immersion

on[—0,0] X [t — €, 1), but the
spacelike unit normal blows up

lim | N(0,f) | = 0. If pisa C!
111,
immersion, then it is null at the point

(0,2).
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At the onset of a singularity (f = t.),

the evolution can be parameterised as:

¢: [_59 5] X [t* — &, t*] — R1+29

P(s, 1) = (1, y(s, 1))

dy dy . Oy
—(0,1)),—(0,0))) =0, Im|—@©O,n))| =1
<az( ) as( ) m\at( ) |

Here ¢ is a smooth timelike immersion

on[—0,0] X [t — €, 1), but the
spacelike unit normal blows up

lim | N(0,f) | = 0. If pisa C!
111,
immersion, then it is null at the point

(0,2).

E. Adam Paxton

Predictability of Weather & Climate, University of Oxford | edmund.paxton@physics.ox.ac.uk 71

Theorem 2 [P. 20190]: Suppose ¢ is a timelike
immersion as above, and suppose ¢ has bounded
mean curvature scalar | A(s, 1) | < C for all |
(s, 1) € [-6,58] X [t: — &, ). Then

[+
[ | k(0,7) | dt = o0

[+—E&

where k(s, 1) denotes the curvature of the (planar) f
lcurve § — (s, t). In particular, ¢ is not C 2 :
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(i) A C! surface which is a smooth TMS away (i) A C' surface which is a smooth TMS

: from a pair of null lines. It contains a away from a periodic lattice of null
Wrapping up: L . .
compact subset which is not a graph. points. It contains a compact subset
1. Every smooth properly - which is a C” graph, but not a C! graph.

immersed timelike maximal

surface in R*2is embedded,
and is a smooth graph over
bounded subsets.

2. Singularity formation
necessitates that the surface

fails to be C2.

3. But it might be C'...
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