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Rough plan of talk: 

1. A (Very) Brief Tour of Minimal Surfaces in . 

2. Review of Differential Geometry in  & the Cauchy Problem 
for Timelike Maximal(/Minimal) Surfaces. 

3. Some new results:

ℝ3

ℝ1+2

Theorem 1 [P. 2019]: Every smooth properly immersed timelike 
maximal surface in  is embedded, and is a smooth graph over 
bounded subsets. 

ℝ1+2

Theorem 2 [P. 2019]: Singularity formation for a TMS always 
involves a curvature blow-up, with blow-up in an  sense. L1L∞
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Part I: Minimal surfaces in  
•  In 1760 Lagrange wrote down the equation 
 
 
 
 
describing a surface  which extremises the area 
functional (a minimal surface). 

• Minimal surfaces describe soap films :) 

• Lagrange didn’t write down solutions to (1.1) apart from the plane ( ) 

ℝ3

Σ = {(x, y, u(x, y))} ⊆ ℝ3

D2u ≡ 0

(1.1)
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In 1776 Meusnier identified minimal surfaces as surfaces of vanishing 
mean curvature, and was able to give the first non-trivial examples: 

Images courtesy of 
M. Weber. 1. The catenoid 2. The helicoid
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Over the last 250 years many more exciting examples of 
minimal surfaces in  have been found…ℝ3

1. Enneper’s surface

2. Scherk’s surface

Images courtesy of E. W. 
Weisstein 

@ MathWorld–A 
Wolfram web resource

3. Costa’s surface
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Theorem (Bernstein 1915): 

Any smooth complete minimal surface  in  which is a graph (i.e. 
) must be a plane.  

(I.e. there are no non-trivial solutions  to (2.1))

Σ ℝ3

Σ = {(x, y, u(x, y))}

u : ℝ2 → ℝ

Theorem (Fujimoto 1988, building upon Osserman 1959 & others): 

If  is a complete minimal surface in  and  is its unit 
normal vector, then either: 

1. Image( ) is a single point (i.e.  is a plane), or 

2. Image( ) omits at most 4 points in .

Σ ℝ3 N : Σ → S2

N Σ

N S2

And many beautiful theorems have been proved! (“Rigidity” of the plane)
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Part II: Minimal surfaces in  

For vectors  &  in Minkowski space , the 
Minkowskian “inner product” is 

  

       and we say  

1.  is timelike if  

2.  is spacelike if  

3.  is null if .  

ℝ1+2

v w ℝ1+2

m(v, w) := − v0w0 + v1w1 + v2w2

v m(v, v) < 0

v m(v, v) > 0

v m(v, v) = 0
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Suppose that  is a surface and 
 is a smooth immersion. We 

define 

                     

and say  is timelike if  for all 
 (i.e.  is Lorentzian). 

      there exist a pair of nowhere-zero,          
              linearly independent vector fields  
              on  such that  are null.

U2

ϕ : U2 → ℝ1+2

gij(p) = m(∂iϕ, ∂jϕ)

ϕ det(g(p)) < 0
p ∈ U2 g

⟺
N±

U2 dϕ(N±)
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In other words, properly immersed 
timelike surfaces come in 2 flavours: 

1. cylinders (spatially compact), or 

2. planes (spatially non-compact)

Morse Lemma (timelike surface=flow of curves): Suppose  is connected and  
is a smooth timelike immersion which is proper (i.e. the preimage of a compact set is 
compact). Then there exists a smooth diffeomorphism of the form 
                                                              

 
such that, after diffeomorphism ( ), one has .

U2 ϕ : U2 → ℝ1+2

ϕ ↦ ϕ ∘ ψ ϕ(s, t) = (t, γ(s, t)) ∈ ℝ1+2

ψ : S1 × ℝ → U2 ψ : ℝ2 → U2or(i) (ii)
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And for a surface parameterised in isothermal coordinates  (i.e. 
 ) it reads: 

(s, t)
g(s, t) = ρ(s, t)(−dt2 + ds2)

For a surface parameterised as a graph  this readsϕ(x, t) = (t, x, u(x, t))

In any case, we have a wave equation! The natural problem is thus the Cauchy problem.

[Born-Infeld equation]

A smooth timelike immersion  is maximal ifϕ : U2 → ℝ1+2
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•A global solution is a proper immersion.

Cauchy problem: 
Given a smooth immersed curve  in the 
plane  and a smooth timelike vector 
field  along , find a smooth immersed 
timelike maximal surface  which intersects 

 and is tangent to  along .

C
{t = 0}

V C
Σ

C V C
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Example (The Shrinking Circle): 

Let  and . 

A Cauchy evolution of  is 

. 

C(s) = (0, cos s, sin s) V(s) = (1,0,0)

(C, V)

ϕ(s, t) = (t, cos t cos s, cos t sin s)
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A flow of round 
circles which 
collapse to a point 
in finite time. 

Example (The Shrinking Circle): 

Let  and . 

A Cauchy evolution of  is 

. 

C(s) = (0, cos s, sin s) V(s) = (1,0,0)

(C, V)

ϕ(s, t) = (t, cos t cos s, cos t sin s)
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•  This is a general trick for cooking up solutions to 
 
 
 
which gives a TMS provided  is an immersion. 

• It is a trick to cook up singular TMSs 

• In general, it gives only local solutions to the 
Cauchy problem.

ϕ

∂2ϕ
∂t2

−
∂2ϕ
∂t2

= 0, m ( ∂ϕ
∂t

± ∂ϕ
∂s

,
∂ϕ
∂t

± ∂ϕ
∂s ) = 0

Where did this example come from? 

It is an example of the method of isothermal gauge 
(i.e. Weierstrass representation formula).
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The shrinking circle is a special case of:

Theorem [Belletini, Hoppe, Novaga & Orlandi 2010]: 

Let   be a smooth, closed, convex, centrally-
symmetric curve, and let . Then the 
Cauchy evolution of  to a TMS consists of a family of 
smooth, closed, convex curves which shrink to a point 
singularity in finite time. 

C ⊂ {x0 = 0}
V = ∂x0 = (1,0,0)

(C, V)

Note: This is not the 
generic singularity 
formation…
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Theorem (Pron’ko, Razumov & Solov’ev 1983, 
Hoppe 1995, Nguyen & Tian 2013): 

There exists no smooth proper timelike maximal 
immersion .ϕ : S1 × ℝ → ℝ1+2

• I.e. No global solutions in the 
spatially-compact case. 

•What about the spatially non-
compact case?

•Generically, for singular TMSs 
constructed by isothermal gauge, 
singularity formation is a swallowtail.

•At the onset of singularity, the limit 
curve is . See [Eggers & 
Hoppe 2009] or [Nguyen & Tian 
2013]).

C1,1/3

•TMSs like to form singularities..
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Theorem 1 [P. 2019]: 
Let  be a smooth proper timelike maximal immersion. Then: 

1.  is an embedding (i.e. no self-intersections). 

2. For every compact subset , there is a timelike plane  
such that  is a smooth graph over .

ϕ : ℝ2 → ℝ1+2

ϕ

K ⊆ Im(ϕ) P ⊆ ℝ1+2

K P

(An ‘upside-down’ Bernstein’s theorem)

•Corollary 1: If  is a smooth properly-immersed TMS, and  is 
its (spacelike) unit normal, then  is contained in a closed hemi-hyperboloid.

Σ ⊆ ℝ1+2 N : Σ → S1+1

Im(N)

•Corollary 2: If  is any self-intersecting curve and  any timelike vector 
field along , then the Cauchy evolution of  to a TMS must form a finite-time 
singularity (in either the future or the past).

C ⊆ {t = 0} V
C (C, V)
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Theorem 1 [P. 2019]: 
Let  be a smooth proper timelike maximal immersion. Then: 

1.  is an embedding (i.e. no self-intersections). 

2. For every compact subset , there is a timelike plane  
such that  is a smooth graph over .

ϕ : ℝ2 → ℝ1+2

ϕ

K ⊆ Im(ϕ) P ⊆ ℝ1+2

K P

ϕ(s, t) = (t,
1
2 (c(s + t) + c(s − t)))

Note 1: There exist many smooth properly immersed graphical TMSs. 
Take 

where  is a smooth proper graph parameterised 
by arclength.

c(s) = (x1(s), u(x1(s)))
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Theorem 1 [P. 2019]: 
Let  be a smooth proper timelike maximal immersion. Then: 

1.  is an embedding (i.e. no self-intersections). 

2. For every compact subset , there is a timelike plane  
such that  is a smooth graph over .

ϕ : ℝ2 → ℝ1+2

ϕ

K ⊆ Im(ϕ) P ⊆ ℝ1+2

K P

ϕ(s, t) = (t,
1
2 (c(s + t) + c(s − t)))

Note 2: This restriction cannot be relaxed. Take      with  like this:c

Note 1: There exist many smooth properly immersed graphical TMSs. 
Take 

where  is a smooth proper graph parameterised 
by arclength.

c(s) = (x1(s), u(x1(s)))



E. Adam Paxton 

Predictability of Weather & Climate, University of Oxford  |  edmund.paxton@physics.ox.ac.uk

Sketch proof of Theorem 1: Let  be a 
smooth proper timelike maximal immersion.

ϕ : ℝ2 → ℝ1+2

Step 1: Construct a coordinate change  
such that, in the new coordinates , 

  are null (i.e global isothermal coords).  

Existence of  proved by T. Milnor, 1985 (non-trivial!)

ψ : ℝ2 → ℝ2

(η+, η−)
N± =

∂ϕ
∂η±

ψ
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Sketch proof of Theorem 1: Let  be a 
smooth proper timelike maximal immersion.

ϕ : ℝ2 → ℝ1+2

Step 3: Changing coordinates (WLOG) as , write  

for the spatial unit tangent along . Show that Step 2 implies  is a strict subset of a 
closed semi-circle. Theorem 1 follows. 

ϕ(s, t) = (t, γ(s, t)) e(s, t) :=
∂sγ(s, t)

|∂sγ(s, t) |
ϕ Im(e)

∎

Step 2: Show that Step 1 implies  and  
are linearly independent for all .

N+(p) N−(q)
p, q ∈ ℝ2

Step 1: Construct a coordinate change  
such that, in the new coordinates , 

  are null (i.e global isothermal coords).  

Existence of  proved by T. Milnor, 1985 (non-trivial!)

ψ : ℝ2 → ℝ2

(η+, η−)
N± =

∂ϕ
∂η±

ψ
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Corollary 2: If  is any self-intersecting curve and  any 
timelike vector field along , then the Cauchy evolution of  to a 
TMS must form a finite-time singularity (in either the future or the past).

C ⊆ {t = 0} V
C (C, V)

•Recall that Theorem 1 implies:

•A-priori, there are two things that could happen at a singularity: 

1. The surface fails to remain timelike. 

2. The surface fails to remain smooth. 

•  In fact (see e.g. [Jerrard, Novaga & Orlandi 2014] or [P. 2019]) case 1 always occurs. 

•But this does not reveal anything about the nature of singularity formation.
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At the onset of a singularity ( ),  
the evolution can be parameterised as:

t = t*

Here  is a smooth timelike immersion 
on , but the 
spacelike unit normal blows up 

. If  is a  

immersion, then it is null at the point 
. 

ϕ
[−δ, δ] × [t* − ε, t*)

lim
t↑t*

|N(0,t) | = ∞ ϕ C1

(0,t*)

ϕ : [−δ, δ] × [t* − ε, t*] → ℝ1+2,

ϕ(s, t) = (t, γ(s, t))

⟨
∂γ
∂t

(0,t),
∂γ
∂s

(0,t)⟩ = 0, lim
t↑t*

|
∂γ
∂t

(0,t) | = 1
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ϕ : [−δ, δ] × [t* − ε, t*] → ℝ1+2,

ϕ(s, t) = (t, γ(s, t))
Theorem 2 [P. 2019]: Suppose  is a timelike 
immersion as above, and suppose  has bounded 
mean curvature scalar  for all

. Then 

 

where  denotes the curvature of the (planar) 
curve . In particular,  is not .

ϕ
ϕ

|h(s, t) | ≤ C
(s, t) ∈ [−δ, δ] × [t* − ε, t*)

∫
t*

t*−ε
|k(0,t) |dt = ∞

k(s, t)
s ↦ γ(s, t) ϕ C2

At the onset of a singularity ( ),  
the evolution can be parameterised as:

t = t*

Here  is a smooth timelike immersion 
on , but the 
spacelike unit normal blows up 

. If  is a  

immersion, then it is null at the point 
. 

ϕ
[−δ, δ] × [t* − ε, t*)

lim
t↑t*

|N(0,t) | = ∞ ϕ C1

(0,t*)

⟨
∂γ
∂t

(0,t),
∂γ
∂s

(0,t)⟩ = 0, lim
t↑t*

|
∂γ
∂t

(0,t) | = 1
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(i) A  surface which is a smooth TMS away 
from a pair of null lines. It contains a 
compact subset which is not a graph.

C1 (ii) A  surface which is a smooth TMS 
away from a periodic lattice of null 
points. It contains a compact subset 
which is a  graph, but not a  graph.

C1

C0 C1

Wrapping up: 

1. Every smooth properly 
immersed timelike maximal 
surface in  is embedded, 
and is a smooth graph over 
bounded subsets. 

2. Singularity formation 
necessitates that the surface 
fails to be . 

3. But it might be … 

ℝ1+2

C2

C1
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THANK-YOU!!! :)

Wrapping up: 

1. Every smooth properly 
immersed timelike maximal 
surface in  is embedded, 
and is a smooth graph over 
bounded subsets. 

2. Singularity formation 
necessitates that the surface 
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ℝ1+2
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