What is... The Wasserstein Distance?

An introduction, with application to climate modelling.

(joint with Mat Chantry, Milan Kléwer & Tim Palmer)
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-Real world problems are multi-dimensional.
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q sk Chinese officials why their nation's environment is so toxic; you'll get a list

of scientific-sounding explanations. The population is huge and dense. Arable
land per capita is alarmingly sparse. Despite stunning rates of economic growth, many
Chinese remain poor and rural, prone to ungreen behaviors such as tossing pollutants

and trash into the rivers. But the real question is why China fares poorly in Yale and
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My country is the

best! We have

the highest GDP.

Actually, mine is the | think my country is

best. We have the best. We have the
longest ski-slope. most biodiversity.

-V

-Real world problems are multi-dimensional.

-If anyone says that their metric is the best, you

should probably be cynical!
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of scientific-sounding explanations. The population is huge and dense. Arable
land per capita is alarmingly sparse. Despite stunning rates of economic growth, many
Chinese remain poor and rural, prone to ungreen behaviors such as tossing pollutants

and trash into the rivers. But the real question is why China fares poorly in Yale and
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I'm now going to tell you that the Wasserstein
Metric is the best way to measure distance between
probability distributions.
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I'm now going to tell you that the Wasserstein
Metric is the best way to measure distance between
probability distributions.

Plan of talk:
1. What is the Wasserstein distance?
2. What are the advantages of the WD, and how to compute it.

3. An application: exploring model climatology in low-precision.

E. Adam Paxton 3 UNIVERSITY OF

20).4:0):3D)

Predictability group internal seminar 09.11.20



1) What is the Wasserstein Distance?
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1) What is the Wasserstein Distance?

- The WD (Earth Mover’s distance) is a distance between
probability distributions (measures) u & v.
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- The WD (Earth Mover’s distance) is a distance between
probability distributions (measures) u & v.

-It comes from the theory of optimal transport.
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1) What is the Wasserstein Distance?

- The WD (Earth Mover’s distance) is a distance between
probability distributions (measures) u & v.

-It comes from the theory of optimal transport.

- Think of u & v as mass distributions. You are tasked with
transporting the mass from u to v.
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1) What is the Wasserstein Distance?

- The WD (Earth Mover’s distance) is a distance between
probability distributions (measures) u & v.

-It comes from the theory of optimal transport.

- Think of u & v as mass distributions. You are tasked with
transporting the mass from u to v.

-The cost to transport unit mass from x to y is c(x, y).
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1) What is the Wasserstein Distance?

- The WD (Earth Mover’s distance) is a distance between
probability distributions (measures) u & v.

-It comes from the theory of optimal transport.

- Think of u & v as mass distributions. You are tasked with
transporting the mass from u to v.

-The cost to transport unit mass from x to y is c(x, y).

-You want the cheapest strategy.
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1) What is the Wasserstein Distance?

- The WD (Earth Mover’s distance) is a distance between

probability distributions (measures) u & v.

-It comes from the theory of optimal transport.

- Think of u & v as mass distributions. You are tasked with
transporting the mass from u to v.

-The cost to transport unit mass from x to y is c(x, y).

-You want the cheapest strategy. Ho T
\\ /_\/ &
-For the case ¢(x, y) = | x — y|? we call the optimal cost X 7, >
the p-Wasserstein Distance (we’ll always take p = 1) N
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There are two formulations of Optimal Transport: Monge (1781) and Kantorovich (1942).
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There are two formulations of Optimal Transport: Monge (1781) and Kantorovich (1942).

Monge’s formulation (1781):

-Suppose

1 & 1
'M=N;5xi , U=N25yi.

(think discrete, equal masses)
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There are two formulations of Optimal Transport: Monge (1781) and Kantorovich (1942).

Monge’s formulation (1781):

-Suppose

1 < 1
,M=N§5xi , 1/=N25yl_.

(think discrete, equal masses)

- A transport strategy is a permutation of N

objects o € Sy N

!
The cost of a strategy is ~ Z (X Yo(i))-

i=1
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Kantorovich’s formulation (1942):
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Kantorovich’s formulation (1942):

-Suppose ", ",
/,{ = 2 piéxl‘ ’ V= Z qjéyj
i=1 j=1

think continuous masses / histograms (can be more general than the above)
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Kantorovich’s formulation (1942):

-Suppose ", ",
/,{ = 2 piéxl‘ ’ V= Z qjéyj
i=1 j=1

think continuous masses / histograms (can be more general than the above)

- A transport strategy is a matrix z where 7;; is mass transported from i to j
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Kantorovich’s formulation (1942):

-Suppose ", ",
/,{ = 2 piéxl‘ ’ V= Z qjéyj
i=1 j=1

think continuous masses / histograms (can be more general than the above)

- A transport strategy is a matrix z where 7;; is mass transported from i to j

- By conservation of mass 7 belongs to Il(u,v) = {ﬂ,-j >0: Z ;= Dp» 2 7 = qj}
: i

J
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Kantorovich’s formulation (1942):

-Suppose ", ",
/,{ = 2 piéxl‘ ’ V= Z qjéyj
i=1 j=1

think continuous masses / histograms (can be more general than the above)

- A transport strategy is a matrix z where 7;; is mass transported from i to j

- By conservation of mass 7 belongs to Il(u,v) = {ﬂ,-j >0: Z ;= Dp» 2 7 = qj}
j i

WD, (u,v) := min X; — V| 7
(4, V) ﬂen(p,q)2| -~y

I,]

E. Adam Paxton W\ UNIVERSITY OF

<’ OXFORD

Predictability group internal seminar 09.11.20



Kantorovich’s formulation (1942):

-Suppose ", ",
/,{ = 2 piéxl‘ ’ V= Z qjéyj
i=1 j=1

think continuous masses / histograms (can be more general than the above)

- A transport strategy is a matrix z where 7;; is mass transported from i to j

- By conservation of mass 7 belongs to Il(u,v) = {ﬂ,-j >0: Z ;= Dp» 2 7 = qj}
: i

J
1
WD (u,v) = min Y [x—ylm{  nb.whenM, =M, =Nandp,=q,=—it
€ll(p.q) 7 . :
Y turns out the two definitions are equivalent.

E. Adam Paxton W \ ; ) UNIVERSITY OF

<’ OXFORD

Predictability group internal seminar 09.11.20



2) What are the advantages of the WD?
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2) What are the advantages of the WD?

(i) It metrizes the space of probability distributions.
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2) What are the advantages of the WD?

(i) It metrizes the space of probability distributions.

If y, is a sequence of probability distributions, then
WD, (yy, p) = O ifSonlyif u, = pu (weakx)

where y;,, — p (weakx) means:

J d(x)du(x) = J ¢(x)du(x) for any bounded function ¢(x)
Rl’l

n
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2) What are the advantages of the WD?

(i) It metrizes the space of probability distributions.

If y, is a sequence of probability distributions, then
WD, (yy, p) = O ifSonlyif u, = pu (weakx)

where y;,, — p (weakx) means:

J d(x)du(x) = J ¢(x)du(x) for any bounded function ¢(x)
Rn n \

nb. If you don’t know this notation, think du(x) = f(x)dx where f'is a PDF.
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2) What are the advantages of the WD?

(i) It metrizes the space of probability distributions.

If y, is a sequence of probability distributions, then
WD, (yy, p) = O ifSonlyif u, = pu (weakx)

where y;,, — p (weakx) means:

J d(x)du(x) = J ¢(x)du(x) for any bounded function ¢(x)
Rn n \
nb. If you don’t know this notation, think du(x) = f(x)dx where f'is a PDF.

nb. (i) = It takes into account the whole distribution (i.e. “all moments”)
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(i1) It is versatile.
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(i1) It is versatile.

You can compare any two probability distributions:
- Continuous distributions.
- Discrete / singular distributions.

- Distributions defined on different spaces.
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(iii) It respects the geometry of the underlying space.
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(iii) It respects the geometry of the underlying space.

-Consider the following 3 simple PDFs:

f gl g2
| ﬂ ) H | |_L
0 ol 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
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(iii) It respects the geometry of the underlying space.

-Consider the following 3 simple PDFs:

f gl g2

L] Ll L[

With LP-distance we have ||f — gll;» = If — &ll;» = 2.
But WD, (f,g) =1, WD(f,8) =T7.
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(iii) It respects the geometry of the underlying space.

-Consider the following 3 simple PDFs:
1 ! 1 th 1 92
N T TS 5 & & .

With LP-distance we have ||f — gll;» = If — &ll;» = 2.

But WD,(f.g,) =1, WD,(f.g,) = 7. 81 82
AENEEEEEE EEEEE
-'This is only worse in higher dimension! Z Z
Here we have ||f — gll,» > Ilf — &ll;» : ;
while WD (f, g1) < WD (f. £y). 0 0

01234567 01234567
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(iii) It respects the geometry of the underlying space.

-Consider the following 3 simple PDFs:

Nb. This is a shortcoming of
many common metrics
e.g. K-S test / K-L divergence

L. ﬂ f Ny H g1 . g2 |_L
With LP-distance we have ||f — gll;» = If — &ll;» = 2.
But WD,(f.g,) =1, WD,(f. g,) = 7. 81 82
AEEEEEERE EEEEN
-This is only worse in higher dimension! 2 Z
Here we have ||f — gll,» > Ilf — &ll;» : ;
while WD (f, g;) < WD, (f, &2)- 0 0 e
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Computation of the WD:
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Computation of the WD:
* Monge formulation: ~ WD(x,v) = min— Z Xis Yo(i))

€S
GN =1

- Special case of assignment problem: “given N workers and N jobs,
find the optimal assignment of workers to jobs”.
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Computation of the WD:
* Monge formulation: ~ WD(x,v) = min— Z (X5 Vo)

€S
GN =1

- Special case of assignment problem: “given N workers and N jobs,
find the optimal assignment of workers to jobs”.

. Can be solved in O(N?) with Hungarian Algorithm (actually
discovered by Jacobi).
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Computation of the WD:
* Monge formulation: ~ WD(x,v) = min— Z (X5 Vo)

€S
GN =1

- Special case of assignment problem: “given N workers and N jobs,
find the optimal assignment of workers to jobs”.

. Can be solved in O(N?) with Hungarian Algorithm (actually

discovered by Jacobi).
MI’MZ
+ Kantorovich formulation: WD, 1) = ] enr}b‘}y) Z CifTTij
i,j=1

-Case of linear programming. Can (usually) be solved in polynomial
time by e.g simplex algorithm.
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Computation of the WD:
* Monge formulation: ~ WD(x,v) = min— Z (X5 Vo)

€S
GN =1

- Special case of assignment problem: “given N workers and N jobs,
find the optimal assignment of workers to jobs”.

. Can be solved in O(N?) with Hungarian Algorithm (actually

discovered by Jacobi).
MI’MZ
+ Kantorovich formulation: WD, 1) = ] enr}b‘}y) Z CifTTij
i,j=1

-Case of linear programming. Can (usually) be solved in polynomial
time by e.g simplex algorithm.

* Approximate formulations (e.g. Cuturi: Sinkhorn
Distances: Lightspeed Computation of Optimal Transport)
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Computation of the WD: Nb. This scales with N =

* Monge formulation: ~ WD(u,v) = min— Z (X Vi) number of samples.

€S
GN =1

- Special case of assignment problem: “given N workers and N jobs,
find the optimal assignment of workers to jobs”.

. Can be solved in O(N?) with Hungarian Algorithm (actually

discovered by Jacobi).
o MM This scales with M =
+ Kantorovich formulation: WD) = N z CijTij number of bins.
i,j=1

-Case of linear programming. Can (usually) be solved in polynomial
time by e.g simplex algorithm.

* Approximate formulations (e.g. Cuturi: Sinkhorn
Distances: Lightspeed Computation of Optimal Transport)
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Computation of the WD:
p f Nb. This scales with N =
* MOnge formUlatlonZ WD(/’l’ V) min — Z i yo(i)) number Of Samp[eS.

€S
GN =1

- Special case of assignment problem: “given N workers and N jobs,
find the optimal assignment of workers to jobs”.

. Can be solved in O(N?) with Hungarian Algorithm (actually

discovered by Jacobi).
MM This scales with M =
+ Kantorovich formulation: WD) = ] eﬂr}&lw z CijTij number of bins.
i,j=1

-Case of linear programming. Can (usually) be solved in polynomial

time by e.g simplex algorithm.

All of these can be found at
* Approximate formulations (e.g. Cuturi: Sinkhorn

github.com/eapax/EarthMover.jl

Distances: Lightspeed Computation of Optimal Transport)
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3) An application: exploring model climatology in low-precision.
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3) An application: exploring model climatology in low-precision.

- Recently there has been lots of interest in low (<64bit) precision arithmetic
for high-performance computing.
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3) An application: exploring model climatology in low-precision.

- Recently there has been lots of interest in low (<64bit) precision arithmetic
for high-performance computing.

- Operational weather forecasting centres have begun porting models to
low-precision.
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3) An application: exploring model climatology in low-precision.

- Recently there has been lots of interest in low (<64bit) precision arithmetic
for high-performance computing.

- Operational weather forecasting centres have begun porting models to
low-precision.

- As forecast models move to low-precision, it’s natural to ask if these models
are suitable for climate modelling (some have argued NOT).
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Climate modelling & weather forecasting are different methodologies.

Test for low-precision weather forecast Test for low-precision climate model

Does it produce the same probabilistic
ensemble forecast as high-precision?

High-precision

High-precision run | (—A/ _ensemble
Initial-data
sample i
\O \ ' Low-precision
T | ensemble

N i 4

Low-precision run y
M

time =0 time ~ 3 days
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Climate modelling & weather forecasting are different methodologies.

Test for low-precision weather forecast Test for low-precision climate model
Does it produce the same probabilistic Does it produce the same long-time statistics
ensemble forecast as high-precision? (invariant measure) as high-precision?

High-precision
High-precision run ; (‘(\-\\en%eneible

Initial-data (4
sample
\@ ﬁ ' Low-precision
T | ensemble
Low-precision run /:j/s‘/
time =0 time ~ 3 days

E. Adam Paxton

0),430)28D,

Predictability group internal seminar 09.11.20



Climate modelling & weather forecasting are different methodologies.

Test for low-precision weather forecast

Test for low-precision climate model

Does it produce the same probabilistic
ensemble forecast as high-precision?

Does it produce the same long-time statistics
(invariant measure) as high-precision?
1‘

High-precision
High-precision run »ff{\en%ene:ble
//( \\

Initial-data
W Low-precision
| ensemble

sampE)@ -‘j
: T |
Low-precision run V/

time =0 time ~ 3 days

E. Adam Paxton
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Distance to test this.




Example: L63 (toy model).
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Example: L63 (toy model).

. Admits an attractor & C R> (x(f) > of ast — o).
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Example: L63 (toy model).

. Admits an attractor & C R> (x(f) > of ast — o).

- &/ is chaotic (positive Lyapunov exponent).
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Example: L63 (toy model).

. Admits an attractor & C R> (x(f) > of ast — o).
- &/ is chaotic (positive Lyapunov exponent).

- Admits an invariant probability measure u supported on
& such that

1
Tlggo?‘o ¢(x(2))dt = ﬂln@ P (x)dp(x) “=10 (xz _ x1)
for any solution x(¢) and any bounded function ¢(x). 2= <§ — x3> xl — x2

i.e. u encodes the long-time statistics of the system.

E. Adam Paxton | | UNIVERSITY OF

0),430)28D,

Predictability group internal seminar 09.11.20



Example: L63 (toy model).

. Admits an attractor & C R> (x(f) > of ast — o).

- &/ is chaotic (positive Lyapunov exponent).

- Admits an invariant probability measure u supported on

o such that _J1 x€B
SUcC 4 e.g. take qb(X) = 0 x ¢ B X(t) — (xl(t),xz(t),x3(t));
1’
fin 7 oo =[] oo =10 ()
for any solution x(¢) and any bounded function ¢(x). 2= <§ — x3> xl — x2
i.e. 4 encodes the long-time statistics of the system. 2 1
W =x1x? —28x°
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Example: L63 (toy model).

. Admits an attractor & C R> (x(f) > of ast — o).

- &/ is chaotic (positive Lyapunov exponent).

- Admits an invariant probability measure u supported on

< such that _J1 xeB
: T cetdked =0 Lap | a0 = 6 0.x0.00)
1
Tlgilo?L P(x(t))dt = mw P()dp(x) i1 =10 (x2 - x)
for any solution x(¢) and any bounded function ¢(x). 2= <§ — x3> xl — x2
i.e. 4 encodes the long-time statistics of the system.
W =x1x? —28x°

nb. link to weak>* convergence!
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How can we approximate (/visualize) i?
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How can we approximate (/visualize) i?

Two methods:
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How can we approximate (/visualize) yi? ! o
Two methods:
1. Data-binning <l o

10000
5000

10 -

(i.e. approximate y as a histogram)
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How can we approximate (/visualize) yi? ! om0
Two methods:

1. Data-binning <l o

(i.e. approximate y as a histogram) oL e

2. Scatter-plotting
(i.e. approximate directly from sampling

1 &
asu~— ) 6,.)
u NZ‘ ,
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Now for the reduced precision...
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Float64 “truth” run

ri’i |

-Integrated L63 in different (b) Float32 ) Float32sr

numerical precisions. # v i i ” i V i

) Float16 ) Float16sr

4

(f) BFloat16 | BFIoathsr

~ v

E. Adam Paxton UNIVERSITY OF
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Now for the reduced precision...

-Integrated L63 in different
numerical precisions.

- Approximated invariant measures
by data-binning.
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Float64 “truth” run

f’l Ul

(b) Float32 ) Float32sr
Float16 | Floathsr |
| (f) BFloat16 BFIoathsr |

Vi
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Float64 “truth” run

f’l |

Now for the reduced precision...

-Integrated L63 in different (b) Float32 ) Float32sr
numerical precisions. J

- Approximated invariant measures # v ” V
by data'binning' ) Float16 | ) Float16sr |

-We want a method for A i
quantitative comparison. f

(f) BFloatl6 BFIoathsr

Vi
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Float64 “truth” run

f’l |

Now for the reduced precision...

-Integrated L63 in different (b) Float32 ) Float32sr
numerical precisions. J :

- Approximated invariant measures ;f’ v ’ V :
by data'binning' Float16 | Float16sr |

- We want a method for A
quantitative comparison. ;5# ;:

-Let’s compute the Wasserstein | (f) BFloat16 | BFIoathsr |
Distances! :

V |

*Tﬂ‘
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-Here are the results...
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precision WD(precision, Float64)
Float64 0.0
Float32 0.456
Float32sr 0.353
Float16 14.8
Float16sr 0.421
BFloat16 16.1
BFloat16sr 3.82
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... but what do these numbers mean?
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-Here are the results...

... but what do these numbers mean?

-We need a null hypothesis.
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precision WD(precision, Float64)
Float64 0.0
Float32 0.456
Float32sr 0.353
Float16 14.8
Float16sr 0.421
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-Here are the results...

... but what do these numbers mean?
-We need a null hypothesis.

-Idea: use an ensemble.
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precision WD(precision, Float64)
Float64 0.0
Float32 0.456
Float32sr 0.353
Float16 14.8
Float16sr 0.421
BFloat16 16.1
BFloat16sr 3.82
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Experiment set-up:

- Take one §-member Float64 ensemble
(Control)

-Take a 5-member ensemble for each
precision (including Float64) and
compare with the Control pairwise (25
comparisons).

-Plot the mean & maximum values with
time.
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Experiment set-up:

- Take one §-member Float64 ensemble
(Control)

-Take a 5-member ensemble for each
precision (including Float64) and
compare with the Control pairwise (25
comparisons).

-Plot the mean & maximum values with
time.
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Experiment set-up:

- Take one §-member Float64 ensemble
(Control)

-Take a 5-member ensemble for each
precision (including Float64) and
compare with the Control pairwise (25
comparisons).

-Plot the mean & maximum values with
time.

The Float64 vs Control test

(black lines) serves 2 purposes:
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1-Wasserstein distance
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Convergence to statistical equilibrium:
data-binning method (binwidth=6.0)

—— Float64 mean distance
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=== Float64 maximum distance
—— Float32 mean distance
=== Float32 maximum distance
—— Float32sr mean distance
—==- Float32sr maximum distan
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BFloat16sr maximum dista
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1. It gives a null hypothesis.

100000 150000 200000

2. It shows that enough time has elapsed to
reach statistical equilibrium.
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Convergence to statistical equilibrium:
data-binning method (binwidth=6.0)

—— Float64 mean distance

1.4 4 === Float64 maximum distance
—— Float32 mean distance
15.0 4 ——- Float32 maximum distance
1.2 1 —— Float32sr mean distance
—==- Float32sr maximum distan
10 12.5 A Float16sr mean distance
Q ’ : Float16sr maximum distan
S ! BFloat16sr mean distance
@ 1 10.0 A . .
o . BFloat16sr maximum dista
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nb. bin-width=6.0 looks like:
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nb. bin-width=6.0 looks like:

X2
o

-30

x"3
~
o

-30

-Results are not sensitive to decreasing

bin-width.
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1-Wasserstein distance

Convergence to statistical equilibrium:

data-binning method (binwidth=6.0)
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Note: the “scatter-plot method”
is also available.

E. Adam Paxton L N |l £53) UNIVERSITY OF

<’ OXFORD

Predictability group internal seminar 09.11.20




Note: the “scatter-plot method”
is also available

(i.e. approximate as

»
~— ) 0,).
’ N3
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Note: the “scatter-plot method”

is also available

(i.e. apprlfl)ximate as

: o, )
MNNizl v

It gives comparable results.
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1-Wasserstein distance

Convergence to statistical equilibrium:
scatter-plot method (sample size=2500)
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Shallow Water Model: github.com/milankl/ShallowWaters.jl
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Shallow Water Model: github.com/milankl/ShallowWaters.jl

L, = 2000km
L, = 1000km T M o
Hy = O.5kmw }‘ i
e U vl s O

u(z,y,t) = (u(z,y,t),v(z,y,t)) fluid velocity

h(xz,y,t) = H(z) + n(x,y,t) layer depth
F(x,y,t) = (f(y),0) wind forcing
Ju
n +(u-V)u+ fzxu=—-gVu+D(u,Vu)+F
ou
B +V-(hu)=0
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Shallow Water Model: github.com/milankl/ShallowWaters.jl

L. — 2000km - Finite difference scheme, 100 x 50

; spatial grid
L, = 1000km/ 77[ v N )
Uu

Hy = 0.51{4 i 4
a5 e / >
VAN TH, =
u(z,y,t) = (u(z,y,t),v(z,y,t)) fluid velocity ) _ )h
h(.CC, Y, t) = H(.CU) + 77(1', Yy, t) layer depth '. Float16 + stochastic round
F(z,y,t) = (f(y),0) wind forcing "
Ju
n +(u-V)u+ fzxu=—-gVu+D(u,Vu)+F
Ou
7 - (hu) =0
5 + V- (hu)
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We want to estimate the Shallow Water model climatology (i.e. invariant measure).
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We want to estimate the Shallow Water model climatology (i.e. invariant measure).

Some problems arise:
-We have time evolution in a 100 X 50 = 5000 dimensional space.
-Working with high-dimensional probability distributions is non-trivial.

-Data-binning becomes stupid. Looking at just one parameter u and
assigning just 2 bins per spatial coordinate would lead to 2°°" bins.
(number of atoms in observable universe ~ 227V

E. Adam Paxton
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-One strategy: project
down onto lower-
dimensional subspaces.
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Ranking IPCC Models Using the Wasserstein Distance

G. Vissio!, V. Lembo', V. Lucarini’?%and M. Ghil*®

LCEN, Meteorological Institute, University of Hamburg, Hamburg, Germany

2Department of Mathematics and Statistics, University of Reading, Reading, UK

° One Strategy: prOieCt 3Centre for the Mathematics of Planet Earth, University of Reading, Reading, UK
4Geosciences Department and Laboratoire de Météorologie Dynamique (CNRS and IPSL),
down onto lower-
dimensional subspaces.

20

0

Ecole Normale Supérieure and PSL University, Paris, France

5Department of Atmospheric & Oceanic Sciences, University of California at Los Angeles,

Los Angeles, USA

-This is what | have seen
done so far.

Key Points:
« Evaluation of climate model performance by benchmarking with reference datasets
» Climate model ranking related to the choice of variables of interest

« Highlighting model deficiencies through emphasis on climatic regions and variables

‘1 [physics.ao-ph] 16 Jun 2
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We can do this for Shallow Waters. Take spatial average over some
(arbitrary) region (100,200)km x (400,500). Do 1D data-binning.

Model climatology for Shallow Water Equations after single 20 year run
(values spatially averaged over (lon,lat)&(100, 200)km x (400, 500)km region)

Float32

Float64
o m
o =
o =

probability density
Floatl6

BFloatl6sr Floatl6sr
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-We can compute Wasserstein distances between these 1D distributions.

- Same experiment as before (5-member ensembles, one Control ensemble).

Shallow Water Equations: Convergence of Wasserstein distances
(data-binning method, values spatially averaged over (lon,lat)&(100, 200)km x (400, 500)km region)

n u V' ——- Float64 (maximum)
2.00 1.757 Float64 (mean)
Float32 (maximum)
1.75 A 1.50 +
0] Float32 (mean)
O
S 1.50- 1.25 4 Float16 (maximum)
o Floatl6 (mean)
o 1.25 A .
c 1.00 A Floatl6sr (maximum)
% 1.00 A Floatl6sr (mean)
P 0.75 1 BFloatl6sr (maximum)
ﬁ 0.751 BFloat16sr (mean)
= 0.50 A
] 0.50 A
—
0.25 A
0.25 - AP reS
0.00 T T T T T 0.00 1 T
0 5 10 15 20 20
time (years)
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- The problem with projection is you are no
longer considering the full distribution.
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-The problem with projection is you are no |Recall: (a) data-binning, (b) scatter-plotting
longer considering the full distribution.

-IDEA: try the “scatter-plotting” method
(direct sampling).
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-The problem with projection is you are no |Recall: (a) data-binning, (b) scatter-plotting
longer considering the full distribution.

x~2
85 05 3

-IDEA: try the “scatter-plotting” method
(direct sampling).

N
&

X"3

o 5 8 8

This seems to work!!!

/

Shallow Water Equations: Convergence of Wasserstein distances
(scatter-plot method, samplesize=2500)

Floatl6 (mean)
=== Floatl6sr (maximum)
—— Floatl6sr (mean)
30 T’, === BFloatl6sr (maximum)
—— BFloatl6sr (mean)

354

n u V' —=- Float64 (maximum)
100 A l l —— Float64 (mean)
|l 55 1 = —=- Float32 (maximum)
901y 401 1\ —— Float32 (mean)
| 50 | Float16 (maximum)
Y
801 \
]
\
N

1-Wasserstein distance

0 5 10 15 20 0 5 10 15 20
time (years)
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Conclusion of experiment.

The results provide strong evidence that the effects of rounding error on the
shallow water model climatology, when compared with initial condition
variability & discretisation error are:

1. Negligible for Float32 and Floati6sr.
2. Significant for Floati16 and BFloati6sr.
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Total Precipitation Annual Mean (mm / day)
El Nifio Control (El Nifio - Control)

* Next steps: performing the
same analysis to reduced
precision SPEEDY.

Double precision

* A coarse resolution

(3.750 X 3.750) atmosphere 0 2 6 10 14 18 22 26 30 34 -22-18-14-10 -6 -2 2 6 10 14 18 22

Only’ primitive equation Z500 Annual Mean (meters)

. R El Nifio Control (El Nifio - Control)
model (prescribed SSTs) with » »
simplified parameterisations.

Half precision

Double precision

* Leo’s 16-bit (deterministic)
version of the code has held

s
up to the first tests. :
I
4800 5000 5200 5400 5600 5800 6000 —200 —150 —-100 =50 O 50 100 150 200
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Summary of talk:
* The Wasserstein metric gives a notion of distance between probability distributions.
* It has excellent properties.
* It's computation presents challenges.

* Nonetheless it is a powerful tool for exploring high-dimensional probability
distributions.

* Using the WD, the ensemble method, and ideas from sampling theory we have
designed an experiment to test effects of rounding error on model climatology.

 Half-precision with stochastic-rounding is a suitable arithmetic for climate modelling
with both of the L63 and Shallow Water models investigated so far.
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Summary of talk:
* The Wasserstein metric gives a notion of distance between probability distributions.
* It has excellent properties.
* It's computation presents challenges.

* Nonetheless it is a powerful tool for exploring high-dimensional probability
distributions.

* Using the WD, the ensemble method, and ideas from sampling theory we have
designed an experiment to test effects of rounding error on model climatology.

 Half-precision with stochastic-rounding is a suitable arithmetic for climate modelling
with both of the L63 and Shallow Water models investigated so far.

Thank-you!!! ;) ... Any questions/thoughts/suggestions?
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